
GeMA – Coupled Thermo-Mechanical

example

08/08/2018 – Version 1.0

Example purpose

This example shows:

• How to setup a thermo-mechanical analysis by composition of the thermo,

mechanical and a coupling physics.

• How to recover principal stress values

Simulation file: BendingBar.lua

The Problem

• This example analyses the heat conduction on a bar, coupled with thermal

stress calculation. Bar top is kept at a constant temperature. A small part of

the bottom border is heated while the other sides are insulated. The right

side of the bar is fixed. The bottom half has a thermal expansion coefficient 5

times greater than top half, making the bar bend upwards.

T = 100.0 oC

1 m

5 m

q = 100 W/m2

q=0 q=0

q=0 q=0α = 2e-5 / oC

α = 10e-5 / oC 0.5 m 1 m

Model file: Material properties

Needed material properties include required thermo, mechanical and coupling parameters.

-- Cell properties

PropertySet

{

id = 'MatProp',

typeName = 'GemaPropertySet',

description = 'Material parameters’,

properties = {

{id = 'k', description = 'Conductivity', unit = 'W/(m.K)'},

{id = 'E', description = 'Elasticity modulus'},

{id = 'nu', description = 'Poisson ratio'},

{id = 'alpha', description = 'Thermal expansion factor', unit = '1/K', format = '.6f'},

{id = ‘h', description = 'Element thickness', unit = 'm'},

},

values = {

{id = 'normal', k = 1.0, h = 0.01, E = 1e6, nu = 0.3, alpha = 2e-5},

{id = 'high', k = 1.0, h = 0.01, E = 1e6, nu = 0.3, alpha = 10e-5},

}

}

Thermo property

Elastic mechanical properties

TM coupling property

Two different materials

Model file: Principal stresses
Principal stresses are calculated by user defined functions provided by the StressFunctionsLib and

are added to the mesh by two user defined attributes.

SharedCodeBegin{}

dofile('$SCRIPTS/stressFunctionsLib.lua')

-- Declares user cell functions for calculating principal stresses on

-- Gauss points using the stress functions lib

CellFunction(stressFunctionsLib.cellFunctionDef('sigma1'))

CellFunction(stressFunctionsLib.cellFunctionDef('sigma2'))

SharedCodeEnd{}

Mesh

{

...

-- Principal Stresses

gaussAttributes = {

{id = 's1', description = 'Sigma 1', functions = true, defVal = 'sigma1'},

{id = 's2', description = 'Sigma 2', functions = true, defVal = 'sigma2'}

},

...

}

User attributes for storing

principal stresses
Attribute values will be given by the user functions

declared above with the help of the Stress Functions lib.

Marks the begining of a code block with functions that might be called

from several threads. A good practice when using stressFunctionsLib.

Ends the shared code block initiated above

Solution file: Physics
The Thermo-Mechanical coupling in GeMA is solved by a composition of three physics: the thermos

physics, the Mechanical physics and the TM coupling physics.

-- Physics for temperature calculation

PhysicalMethod {

id = 'HeatPhysics',

typeName = 'ThermoFemPhysics',

type = 'fem',

mesh = 'mesh',

boundaryConditions = {'Tbc1', 'Tbc2'},

}

-- Physics for displacement and stress calculation

PhysicalMethod {

id = 'StressPhysics',

typeName = 'MechanicalFemPhysics.PlaneStress',

type = 'fem',

mesh = 'mesh',

boundaryConditions = {'ubc'},

stressMode = 'gauss',

}

Stresses should be recovered

on Gauss points only

-- Coupling physics

PhysicalMethod {

id = 'TempStressPhysics',

typeName = 'CoupledTMFemPhysics.PlaneStress',

type = 'fem',

mesh = 'mesh',

referenceT = 100, -- Reference temperature

-- for the material

stressMode = 'gauss',

}

Solution file: Orchestration script

The orchestration script is very similar to every other example using the linear fem solver. The only

noteworthy feature is the physics composition.

function ProcessScript()

-- Solve the problem using the FEM method with a temperature physics, a stress physics

-- and a coupling physics

fem.solve({'HeatPhysics', 'StressPhysics', 'TempStressPhysics'}, 'solver')

print('')

print('Calculated results:')

-- Print calculated node data

io.printMeshNodeData('mesh', {'T', 'u'}, {header_title = true, eval_functions = true})

-- Print calculated Gauss data

io.printMeshGaussData('mesh', {'S', 's1', 's2'}, {header_title = true, eval_functions = true})

-- Save data to a Neutral file

io.saveMeshFile('mesh', '$SIMULATIONDIR/out/$SIMULATIONNAME.pos', 'nf',

{'u', 'T'}, {'S', 's1', 's2'}, {saveDisplacements=true})

end Stress values calculated

by the physics set Principal stress values

calculated by user functions

Ensure that principal stress values

are calculated for printing

Composition

Results

Temperature and deformation (exaggeration = 10x)

Principal Stresses

𝜎1

𝜎2

σ (𝑘𝑃𝑎)T (º𝐶)

