GeMA – Coupled Thermo-Mechanical example **Tecgraf**

08/08/2018 - Version 1.0

Example purpose

This example shows:

- How to setup a thermo-mechanical analysis by composition of the thermo, mechanical and a coupling physics.
- How to recover principal stress values

Simulation file: BendingBar.lua

The Problem

• This example analyses the heat conduction on a bar, coupled with thermal stress calculation. Bar top is kept at a constant temperature. A small part of the bottom border is heated while the other sides are insulated. The right side of the bar is fixed. The bottom half has a thermal expansion coefficient 5 times greater than top half, making the bar bend upwards.

Model file: Material properties

Needed material properties include required thermo, mechanical and coupling parameters.

```
-- Cell properties
PropertySet
  id = 'MatProp',
 typeName = 'GemaPropertySet',
  description = 'Material parameters',
properties = {
   {id = 'k', description = 'Conductivity', unit = 'W/(m.K)'},  Thermo property
   {id = 'E', description = 'Elasticity modulus'},
                                                                                 Elastic mechanical properties
   {id = 'nu', description = 'Poisson ratio'},
   {id = 'alpha', description = 'Thermal expansion factor', unit = '1/K', format = '.6f'},
    {id = `h', description = 'Element thickness', unit = 'm'},
                                                                                  TM coupling property
  },
 values = {
   {id = 'normal', k = 1.0, h = 0.01, E = 1e6, nu = 0.3, alpha = 2e-5},
{id = 'high', k = 1.0, h = 0.01, E = 1e6, nu = 0.3, alpha = 10e-5}, Two different materials
```


Model file: Principal stresses

Principal stresses are calculated by user defined functions provided by the StressFunctionsLib and are added to the mesh by two user defined attributes.

Tecgraf

SharedCodeBegin{} Marks the begining of a code block with functions that might be called from several threads. A good practice when using stressFunctionsLib.

dofile('\$SCRIPTS/stressFunctionsLib.lua')

```
-- Declares user cell functions for calculating principal stresses on
-- Gauss points using the stress functions lib
                                                                              \implies \sigma_{1,2} = \frac{\sigma_{XX} + \sigma_{YY}}{2} \pm \sqrt{\frac{(\sigma_{XX} - \sigma_{YY})^2}{4} + \sigma_{XY}^2}
CellFunction(stressFunctionsLib.cellFunctionDef('sigma1'))
CellFunction(stressFunctionsLib.cellFunctionDef('sigma2'))
```

SharedCodeEnd{} **Ends** the shared code block initiated above

```
Mesh
  -- Principal Stresses
  qaussAttributes = {
    {id = 's1', description = 'Sigma 1', functions = true, defVal = 'sigma1'},
    {id = 's2', description = 'Sigma 2', functions = true, defVal = 'sigma2'}
  },
                 User attributes for storing
                 principal stresses
                                                                          Attribute values will be given by the user functions
  . . .
                                                                          declared above with the help of the Stress Functions lib.
              PUC
```

Solution file: Physics

The Thermo-Mechanical coupling in GeMA is solved by a composition of three physics: the thermos physics, the Mechanical physics and the TM coupling physics.

```
-- Physics for temperature calculation
PhysicalMethod {
    id = 'HeatPhysics',
    typeName = 'ThermoFemPhysics',
    type = 'fem',
    mesh = 'mesh',
    boundaryConditions = {'Tbc1', 'Tbc2'},
}
-- Physics for displacement and stress calculation
PhysicalMethod {
    id = 'StressPhysics',
    typeName = 'MechanicalFemPhysics.PlaneStress',
```

= 'mesh',

mesh

type = 'fem',

stressMode = 'gauss',

boundaryConditions = {'ubc'},

Solution file: Orchestration script

Tecgraf

PUC

The orchestration script is very similar to every other example using the linear fem solver. The only noteworthy feature is the physics composition.

Results

Temperature and deformation (exaggeration = 10x)

