
GeMA – one-way HM coupling in 2D involving

upscaling process and use of external simulator

Version 1.0

Example set purpose

This example shows:

• How to deal with external simulators during the orchestration

• How to load a mesh objet from a mesh file / to write a mesh objet to a

mesh file

• How to prepare a destination mesh to receive data from a source mesh

• How to orchestrate an upscaling process

The example

The example presents a one-way HM coupling simulation in

2D involving upscaling process and use of external simulator.

Pore pressures resulting from the hydraulic simulation will

impact the displacements computed during the mechanical

process.

Involved
processes

Upscaling
pore

pressure

Conecting
external

simulator

Data
in/output

The problem

Simulation time 4000 days

Hydraulic Mesh

5898 quadratic

triangles (T6)

Mechanical Mesh

7020 linear

quadrilaterals (Q4)

Model file: Meshes

-- State variables

StateVar{id = 'POREP', description = 'pore pressure'}

StateVar{id = 'u', dim = 2, description = 'Displacements in the X and Y directions'}

-- Mesh definition

Mesh

{

id = 'mesh_H',

typeName = 'GemaMesh.elem',

description = '2D mesh for hydraulic problem',

coordinateDim = 2,

}

Mesh

{

id = 'mesh_M',

typeName = 'GemaMesh.elem',

description = '2D mesh for mechanical problem',

coordinateDim = 2,

}

Multi-physics and multi-scale simulation often requires a specific discretization for each physic domain.

Here we declare empty hydraulic and mechanical meshes to be filled during the orchestration.

Hydraulic Mesh

Mechanical Mesh

Solution file: External simulator

function ProcessScript()

dofile('geoflux.lua')

-- Run external hydraulic simulation

geoflux.runHydraulic(...)

-- Run upscaling process

...

-- Run external mechanical simulation

geoflux.datFile(...)

geoflux.bcoFile(...)

geoflux.runMechanical(...)

end

Here we want to build an automatic way to run the external simulador (geoflux3D) through the

orquestration Lua script and automatically reproduce its working environment.

Important Note: it requires to be able to run the simulator in command line.

Example of tasks in geoflux.lua:

 main function responsible for

running geoflux3D.exe

 specific calls to GeMA mesh

 write/read/modify configuration

files

 convert input/output files

 auxiliar routines ...

allow access to the Lua functions of

our external simulator (geoflux3D)

function implemented in

geoflux.lua responsible for

running hydraulic simulation

function implemented in

geoflux.lua responsible for

running mechanical simulation

generate geoflux3D specific configuration files

Solution file: Load/Save mesh

-- Load hydraulic mesh with porep values

io.loadMeshFromFile('mesh_H', posFile_H, 'nf', 'POREP', nil)

-- Save hydraulic mesh in vtk file

vtkLib.saveMeshFile('mesh_H', {'POREP'}, nil, outName_H, {allStates = true})

...

-- Load mechanical mesh with no values

io.loadMeshFromFile('mesh_M', ntrFile_M, 'nf')

...

-- Save mechanical mesh in pos and vtk files

vtkLib.saveMeshFile('mesh_M', {'POREP'}, nil, outName_M..'_mm', {allStates = true})

io.saveMeshFile('mesh_M', outName_M..'_mm', 'nf', 'POREP', nil, {allStates = true})

No data, only nodes coordinates

and cells topology are filled

During the process, the hydraulic and mechanical meshes objects are filled. The pore pressure data is

stored on the meshes nodes and can be written on output files in for visualization (NF or VTK format).

Hydraulic Mesh

Mechanical Mesh

data of all simulation

states is saved

Solution file: Prepare meshes for upscaling

-- Add porep value in mechanical mesh

local mesh_H = modelData:mesh('mesh_H')

local mesh_M = modelData:mesh('mesh_H')

local nstate = mesh_H:numNodeValueStates('POREP')

mesh_M:addNodeValueSet(ValueInfo('node attribute', {id = 'POREP', history = nstate}))

-- Set porep value times

for i=1, nstate do

local t = mesh_H:nodeValueStateTime('POREP', i-1)

mesh_M:setNodeValueStateTime('POREP', i-1, t)

end

Important Note: it is the responsibility of the user to prepare the mechanical mesh to receive data.

After loading the mesh geometry (see previous slide), in our case we have to define a new data value

on nodes to store the pore pressure data. As we already know the number of steps from the hydraulic

simulation we can allocate the required space to store the data and set the corresponding time for

each state.

allocation of fixed number of statesdata namedata type

set the mechanical pore pressure times

as the same as in the hydraulic case

Solution file: Upscaling process (1)

-- Build bucket index for hydraulic mesh

local bucketOptions = {

capacity = 100, -- Each bucket will have a maximum of 100 references stored in

gridStartingSize = -1, -- The grid size will be automatically initialized

activeOnly = false, -- All mesh elements will be stored, active or not

info = true, -- Will print informations about the mesh mapping

}

local bucketIndex = mm.buildBucketIndex('mesh_H', 1, bucketOptions)

Creating a bucket index is the first step of the upscaling process. It allows us to reduce the locating

algorithms complexity during the key operation of mesh mapping (data transfer) between two

different meshes. In our case such operation requires to create a bucket index that stores the

elements of the hydraulic mesh.

bucket index will store references to the mesh elements

Solution file: Upscaling process (2)

-- Transfer porep data to mechanical mesh

local eps = 0.5 * mesh_M:edgeMinLength()

local nodata = -9999

local mappingOptions = {

noDataMode = true, -- Will activate the `noData` mode

noDataValue = nodata, -- Will set the `noData` value to nodata

noDataEps = eps, -- Will set the tolerency value to eps

state = -1, -- All states will be mapped

interpType = 'idw', -- IDW interpolation will be used

interpParam = 2.0, -- IDW parameter (inverse distance squared in this case)

activeOnly = false, -- Gauss points of all elements of the destination mesh will receive data

info = true, -- Will print informations during the mesh mapping

}

mm.meshMapping('mesh_M', bucketIndex, 'POREP', nil, false, mappingOptions)

distance criterion above which we consider that

mechanical nodes are out of the hydraulic mesh domain

The mesh mapping is the key operation of the upscaling process. It first locates the mechanical nodes

inside the hydraulic mesh (identifying its containing cell or closest node). Then it computes the

corresponding pore pressure value using the specified interpolation method.

set the interpolation

method and its

parameters

(see interpolation section

for details and options)

Results: Evolution of the hydraulic pore pressure

Hydraulic Mesh

Mechanical Mesh

t = 3.1 days

t = 4000 days

Upscaling

Results: Mechanical displacements

Horizontal displacements

Vertical displacements

t = 4000 days

t = 4000 days

