
GeMA – Temperature tutorial

examples

08/10/2018 – Version 1.1

Example set purpose

This examples show:

• How to setup models for both steady state and transient temperature

analysis

• Several different orchestration techniques, useful in many contexts

• How to setup mesh attributes / cell properties with values calculated by user

functions

• How to initialize values for element integration points

• How to setup time dependent boundary conditions

The examples

• Examples 1 and 2 presents a steady state and a transient analysis of heat

conduction on a square plate subjected to Dirichlet

(prescribed temperature) boundary conditions.

– This examples are similar to the ones presented on

the GeMA tutorial. Their main change is a simplified way

of building the mesh.

• Example 3 presents a transient analysis of a rod, heated on one side and

insulated on the others.

The examples
• Example 4 presents the steady state temperature profile for a set of sedimentary layers

subjected to a heat flux at their base and a prescribed surface temperature.

• Example 5 builds on the previous example

by considering porosity and nonlinearities

arising from making the conductivity a

function of the temperature.

• Example 6 presents a transient analysis for

a scenario where the surface temperature

is a function of the bathymetry and changes

over time.

• Example 7 updates the porosity initialization function

to traverse mesh cells in parallel.

Together, this 4 examples show how some complex models can be created by combining user

provided functions with advanced orchestration techniques.

The examples

• Example 8 presents a phase change analysis for

a solidification problem, solved by using the

effective heat capacity method and the non-linear

FEM solver.

On this presentation, the first example will present and analyze the complete model source. Other examples

will present only relevant parts. The complete source for all models are available at the example files.

Although this examples try to explain all involved concepts and syntaxes, they are not a substitute for

reading the GeMA tutorial and additional documentation.

As a convention, all the given examples will generate result files on the “out” directory.

1 – STEADY STATE HEAT

CONDUCTION ON A SQUARE PLATE

The Problem

• Heat conduction on a square plate subjected to prescribed temperatures

on its borders:

• Analytical solution used to validate results:

T(x, y) = ?

w = 1m

he = 1m

100 oC

Tside = 100 oC 100 oC

Ttop = 500 oC

k = 10 W/(m. oC)

Reference: “Fundamentals of the

Finite Element Method for Heat and

Fluid Flow”, Lewis at al.

Example 5.2.1

Key Example Points

• This example presents the basic structure for a GeMA simulation

• In particular it shows how to:

– Structure a GeMA model

– Create a simple, “grid like”, mesh using auxiliary functions

– Setup material values

– Setup a Dirichlet boundary condition by prescribing border temperatures

– Work with units

– Create user functions to validate the results against analytical results

– Setup a simple orchestration for solving the problem through the Finite Element Method

– Save and print results

• Files are saved both in Neutral file and Vtk formats

Simulation file: SteadyStateHeatConduction.lua

Simulation file: SteadyStateHeatConduction.lua

This file is the main simulation file. It stores a model description and loads the two auxiliary files

storing the simulation model and the simulation solution. Splitting the simulation on those files is

a convention to separate the description of what will be simulated (the model file) from the

description of how it will be simulated (the solution file).

-- The model description

Simulation

{

name = 'Steady state conduction',

modelVersion = '1.0',

description = 'A simple heat conduction model for a square plate with different\n'..

'prescribed border temperatures.\n'..

'Reference: "Fundamentals of the Finite Element Method for Heat and Fluid Flow"\n'..

' Lewis at al, example 5.2.1'

}

-- Load model and solution files for this problem

dofile('$SIMULATIONDIR/$SIMULATIONNAME_model.lua')

dofile('$SIMULATIONDIR/$SIMULATIONNAME_solution.lua')

Macro expanding to the

directory of this simulation

Macro expanding to the name of this

simulation file, without extension

Loads the file “SteadyStateHeatConduction_solution.lua”

from the same directory as the simulation file

Comments begin with -- and run until the end of the line
String concatenation operation

used for creating a multi-line

description

Model file: Model parameters

The model file begins by creating some constants with model parameters in order to simplify

changing the plate geometry, conductivity and prescribed temperatures.

local cond = 10 -- Plate conductivity in W/(m.degC)

local Tt = 500 -- Top temperature in degC

local Ts = 100 -- Bottom and side temperatures in degC

local nw = 20 -- The number of plate cells in the x direction

local nh = 20 -- The number of plate cells in the y direction

local w = 100 -- Plate width in cm

local he = 100 -- Plate height in cm

w = 1m

he = 1m

100 oC

Tside = 100 oC 100 oC

Ttop = 500 oC

k = 10 W/(m. oC)

Although the Thermo physics operates with SI units,

this example will use a mesh with coordinates in cm

and temperatures in degC. The system will perform

the need conversions automatically.

Model file: State variable

Next, the simulation state variable is defined. State variables are the nodal values calculated by the

simulation and represent the model degrees of freedom. For a thermal simulation, the state variable

should be a scalar value named T, as expected by the Thermo physics plugin.

-- State variables

StateVar{id = 'T', description = 'Temperature', unit = 'degC', format = '8.2f’}

The state

variable name

The unit in which the

temperature data will

be stored in the mesh

The format used when printing

temperature values (width + precision).

Uses the same syntax as the C printf()

function

Model file: Material properties

Material properties are given by property sets. A property set is a table with material properties as

columns. Each cell references one line for each property set in the model. For this simulation, only

one table is needed with columns for the material conductivity and the plate thickness. This

columns should be named k and h, as expected by the Thermo physics.

-- Cell properties

PropertySet

{

id = 'MatProp',

typeName = 'GemaPropertySet',

description = 'Material parameters’,

properties = {

{id = 'k', description = 'Conductivity', unit = 'W/(m.degC)'},

{id = ‘h', description = 'Element thickness', unit = 'cm'},

},

values = {

{k = cond, h = 1.0},

}

}

The property set name

The property (table column) name

The unit in which property values will

be given. Although k is given with a

length unit of ‘m’ and t as ‘cm’, there is

no problem since automatic conversion

will make them compatible.

Property

name

Constant cond defined on

the beginning of the file

Table line. If the model had more materials, the

values table would have several lines

Table column definitions

Model file: Analytical solution
Before creating the mesh, a node user function is created for calculating the error between the

analytical and the numerical solutions. It will be used to provide values for a node attribute.

-- A function to calculate the analytical model result at the given

-- coordinate. Expects x and y to be given in cm.

local function anaT(x, y)

local sum = 0

for i = 1, 200 do

local u = i * math.pi/w

local num = ((-1)^(i+1) + 1) * math.sin(u*x) * math.sinh(u*y)

local den = i * math.sinh(u*he)

sum = sum + num/den

end

return Ts + (Tt-Ts) * (2/math.pi) * sum

end

-- A node user function for calculating the error between

-- the analytical and the numerical solutions

NodeFunction { id = 'errf',

parameters = { {src = 'coordinate', unit = 'cm'},

{src = 'T', unit = 'degC'},

},

method = function(nodePos, nodeT)

return math.abs(anaT(nodePos[1], nodePos[2]) - nodeT)

end

}

The node coordinate

The node temperature from state var T

The desired parameter unit. Values are converted if needed

x and y coordinates

The match between ‘coordinate’ and

‘nodePos’, ‘T’ and ‘nodeT’ is done by

their positions in the parameters list

and in the function arguments

Model file: Mesh

Since the simulation domain is a square plate, the discretization mesh can be easily created by

using auxiliary functions. Refer to the “meshLib” examples for further details and options.

dofile('$SCRIPTS/meshLib.lua') -- Loads the 'meshLib' auxiliary functions

local xpoints = meshLib.regularSpacing(0.0, w, nw)

local ypoints = meshLib.regularSpacing(0.0, h, nh)

local nodes, elements, borders = meshLib.build2DGrid('quad4', xpoints, ypoints, nil, {MatProp = 1})

Mesh

{

-- General mesh attributes

id = 'mesh',

typeName = 'GemaMesh.elem',

description = 'Plate mesh discretization',

-- Mesh dimensions

coordinateDim = 2,

coordinateUnit = 'cm',

… continues on the next slide

The mesh name

The plugin name used to create the mesh (GemaMesh)

+ the mesh type (elem)

The mesh dimension (2D)

The unit in which node coordinates are given

Returned tables storing the mesh geometry
Element

type

Property

set name

Default property set

line associated with

mesh elements

Creates the set of x coordinates used to define the position of grid

columns. This call creates a regularly spaced table of coordinates from

0.0 to the plate width (given by w) with nw+1 points (nw cells).

Model file: Mesh (continued)

-- State vars stored in this mesh (per node)

stateVars = {'T'},

-- Node attributes

nodeAttributes = {

{id = 'Err', description = 'Error between expected and calculated values', unit = 'degC',

functions = true, defVal = 'errf', format = '10.4'}

},

-- Mesh node coordinates

nodeData = nodes,

-- Element data

cellProperties = {'MatProp'},

cellData = elements,

-- Boundary data

boundaryEdgeData = borders,

}

… continued from previous slide

Associates this mesh with property set MatProp

Sets the table with element definitions

Associates this mesh with state variable T

Sets the table with node coordinates

Sets the table with mesh border definitions

Node attribute name

List with user created node attributes.

Err supports functions and its default value is the errf node function.

Model file: Boundary conditions

To complete the model file, boundary conditions for prescribing temperatures on plate borders are

needed. For that, the Thermo physics provides the ‘node temperature’ boundary condition type

where temperature values are associated with mesh nodes. Like property sets, boundary

conditions are like a table with several columns. On this case, only one column for the temperature,

named T, is needed.

BoundaryCondition {

id = 'Border temperature',

type = 'node temperature',

mesh = 'mesh',

properties = {

{id = 'T', description = 'External temperature applied on the node', unit = 'degC'},

},

nodeValues = {

{'gridLeft', Ts},

{'gridBottom', Ts},

{'gridRight', Ts},

{'gridTop', Tt},

}

}

Boundary condition name

Boundary condition type for prescribed temperature values

Associates this boundary condition with the mesh named ‘mesh’

B.C. column

definitions
B.C. column name

Boundary conditions. Each table line associates a node set to a temperature value

Node set names automatically created by the “meshLib”, storing border edges

Temperature constants defined on the beginning of the file

100 oC

Ts = 100 oC 100 oC

Tt = 500 oC

Solution file: Numerical solver

The first section of the solution file defines which numerical solver will be used to solve the equation

system created by the FEM method. On this example, we will use a direct matrix solver provided by

the ArmadilloSolver plugin.

NumericalSolver {

id = 'solver',

typeName = 'ArmadilloSolver',

description = 'Direct matrix solver',

}

The solver name

The plugin name used to create the numerical solver

Solution file: Physics

Physics are the objects that provide the set of mathematical equations used to solve the simulation.

For solving a temperature problem, this example will use the Thermo physics plugin.

PhysicalMethod {

id = 'HeatPhysics',

typeName = 'ThermoFemPhysics',

type = 'fem',

mesh = 'mesh',

boundaryConditions = {'Border temperature'},

}

The physics name

The plugin name used to create the physics

Associates this physics with the mesh named ‘mesh’

Associates this physics with a set of boundary conditions

Solution file: Orchestration script
Finally, the orchestration script, provided by the ProcessScript() Lua function, drives the simulation

by calling the FEM process to execute the simulation.
function ProcessScript()

-- Prints model mesh information before running the simulation

io.printMesh('mesh')

-- Solves the model using the FEM method for linear problems

fem.solve({'HeatPhysics'}, 'solver')

-- Print results evaluating the error between the analytical and numerical solutions

print('\n\nCalculated results:')

io.printMeshNodeData('mesh', {'coordinate', 'T', 'Err'}, {eval_functions=true})

-- Save results on the out sub-directory of the same directory hosting the simulation model

-- Saved file will have the same name as the simulation file

-- The saveMeshFile() call expects the 'out' sub-directory to exist

io.saveMeshFile('mesh', '$SIMULATIONDIR/out/$SIMULATIONNAME.nf', 'nf', {'T', 'Err'})

-- Save result using Vtk format

dofile('$SCRIPTS/vtkLib.lua')

vtkLib.saveMeshFile('mesh', {'T', 'Err'}, nil, '$SIMULATIONDIR/out/$SIMULATIONNAME')

end

The set of physics used to solve the problem

The numerical solver used to solve the equation system

Printed nodal values are the node coordinates,

the state variable T and the node attribute Err

Functions should be evaluated since we want to print the error

value, and not the function name associated with Err

Expanded macros

Output file type

(Neutral File)

Saved nodal values are the state

variable T and the node attribute Err

Create Paraview (Vtk)

type output
Saved node values No saved Gauss

points values

Output file

Load Vtk lib.

Running the simulation

• At the command prompt type:

C:\> gema SteadyStateHeatConduction.lua

• After running:

– The initial mesh will be printed to the console, followed by simulation results

– The same contents printed to the console can be found on the ‘runlog.txt’ file, created

on the current directory

– Simulation results will also be saved, in neutral file format, to the file

SteadyStateHeatConduction.nf on the “out” sub-directory at the same location of the

example file. Please make sure that the “out” directory exists and you have write

permission on it before running the simulation.

– Results will also be saved in Vtk format (files with .pvd and .vtu extensions)

Analyzing the runlog.txt file, the careful reader will find a set of warnings associated to the boundary conditions. This

happens because, in our model, top corner nodes have both a 500 degC and a 100 degC prescribed temperature. The

inconsistency is solved by assuming the first prescribed temperature for the node.

Results (Neutral file - Pos3D)

Temperature Error

Results (Vtk - Paraview)

2 – TRANSIENT HEAT CONDUCTION

ON A SQUARE PLATE

The Problem

• This simulation revisits the previous example, analyzing the transient

problem when the same boundary conditions are suddenly imposed

over a plate with an initial uniform temperature equal to 0 oC

T(x, y, 0) = 0 oC
T(x, y, t) = ?

w = 1m

he = 1m

100 oC

Tside = 100 oC 100 oC

Ttop = 500 oC

k = 10 W/(m.oC)
rho = 2 kg/m3
Cp = 10 J/(kg.oC)

Reference: “Fundamentals of the

Finite Element Method for Heat and

Fluid Flow”, Lewis at al.

Example 6.6.1

Key Example Points

• This example shows how to create a simple orchestration for transient linear

problems

• This example builds heavily on the previous one and only shows key

difference points. Please refer to the simulation files for the complete

source.

Simulation file: TransientHeatConduction.lua

Model file

The main changes to the model file are the initialization of the plate temperature, the addition of the

density and specific heat capacity to the property set and the removal of the analytical solution.

local cond = 10 -- Plate conductivity in W/(m.degC)

local dens = 2 -- Plate density in kg/m3

local hcap = 10 -- Plate specific heat capacity in J/(kg.degC)

local T0 = 0 -- Initial plate temperature in degC

StateVar{id = 'T', description = 'Temperature', unit = 'degC', defVal = T0, format='8.2f'}

PropertySet

{

id = 'MatProp',

typeName = 'GemaPropertySet',

description = 'Material parameters',

properties = {

{id = 'k', description = 'Conductivity', unit = 'W/(m.degC)'},

{id = 'rho', description = 'Density', unit = 'kg/m3'},

{id = 'cp', description = 'Specific heat', unit = 'J/(kg.degC)'},

{id = ‘h', description = 'Element thickness', unit = 'cm'},

},

values = {

{k = cond, rho = dens, cp = hcap, h = 1.0},

}

}

The default value used to initialize the state variable

value at each node. When this value is missing, the

state var is initialized with 0.0

Solution File

function ProcessScript()

-- Creates the FEM solver used for calculating the numerical solution at each time step

-- for linear problems

local solver = fem.initTransientSolver({'HeatPhysics'}, 'solver')

local dt = 0.001 -- The time step

local endt = 0.2 -- Simulation duration

local nsteps = endt / dt -- Number of steps

-- Creates the output simulation file

local file = io.prepareMeshFile('mesh', '$SIMULATIONDIR/out/$SIMULATIONNAME.nf', 'nf', {'T'})

-- Load VtkLib to enable saving results in the Vtk format

dofile('$SCRIPTS/vtkLib.lua')

-- Simulation time loop

for i=1, nsteps do

-- Set the current time in the model

setCurrentTime(i*dt)

-- Solve one time step

fem.transientStep(solver, dt)

-- Add step results to the ouptut file using neutral file and vtk formats

vtkLib.saveMeshFile('mesh', {'T'}, nil, '$SIMULATIONDIR/out/$SIMULATIONNAME', {state = i, stateTime = i * dt})

io.addResultToMeshFile(file, i * dt)

end

-- Close output file

io.closeMeshFile(file)

end

The orchestration script now includes the time loop, with calls at each time step to the FEM solver to

advance the simulation. It also builds the result file iteratively.

Current time

The file object returned

by io.prepareMeshFile()

The solver object returned

by fem.initTransientSolver()

Advances the simulation by a time step dt.

Time

step

Current time

Results (Neutral file - Pos3D)

0

20

40

60

80

100

120

140

160

0 0.05 0.1 0.15 0.2

T
e
m

p
e
ra

tu
re

 (
ºC

)

Time (s)

Temperature evolution at the center of
the plate

t
=

 0
.0

1
 s

t
=

 0
.0

5
 s

t
=

 0
.1

0
 s

t
=

 0
.1

5
 s

t
=

 0
.2

0
 s

T
e

m
p

e
ra

tu
re

(º
C

)

Results (Vtk - Paraview)

t
=

 0
.0

1
 s

t
=

 0
.0

5
 s

t
=

 0
.1

0
 s

t
=

 0
.1

5
 s

t
=

 0
.2

0
 s

3 – TRANSIENT CONDUCTION ON A

HEATED ROD

The Problem

• This example simulates the heat conduction on an insulated rod with a

heat influx on one of its tips, comparing the numerical results to an

analytical solution

• Analytical solution used to validate results:
Reference: “Fundamentals of the

Finite Element Method for Heat and

Fluid Flow”, Lewis at al.

Example 6.4.2

Key Example Points

• The model structure for this simulation is similar to the previous ones. The

main features not seen on previous models are:

– Setup a Neumann boundary condition by prescribing border heat fluxes

– Setup time-dependent node user functions

– Print options for the FEM solver

• This example builds heavily on the previous ones and only shows key

difference points. Please refer to the simulation files for the complete

source.

Simulation file: HeatedRod.lua

Model file: Analytical solution

On the model file, two attributes will be added to the mesh for storing both the analytical solution

and the error between the numerical and analytical calculations. Both attributes will be tied to user

node functions.

-- The standard erfc(x) function

local function erfc(x)

local p = 0.3275911

local a1 = 0.254829592

local a2 = -0.284496736

local a3 = 1.421413741

local a4 = -1.453152027

local a5 = 1.061405429

local t = 1/(1+p*x)

return t * (a1 + t * (a2 + t * (a3 + t * (a4 + t * a5)))) * math.exp(-x*x)

end

-- A function to calculate the analytical model result at the given x coordinate and simulation time.

local function anaT(x, t)

local a = 2 * math.sqrt(t/math.pi)

local b = math.exp(-x*x/(4*t))

local c = 0.5 * x * math.sqrt(math.pi/t) * erfc(x/(2*math.sqrt(t)))

return a * (b - c)

end

Model file: Analytical solution (continued)
-- A node user function for calculating the error between the analytical and the numerical solutions

NodeFunction { id = 'errf',

parameters = { {src = 'Tana'},

{src = 'T'},

},

method = function(Tana, T) return Tana - T end

}

-- A node user function for calculating the analytical solution

NodeFunction { id = 'ana',

parameters = { {src = 'coordinate', dim=1},

{src = 'time'},

},

method = function(x, t) return anaT(x, t) end

}

Mesh

{

...

nodeAttributes = {

{id = 'Tana', description = 'Expected temperature analytically calculated’,

functions = true, defVal = 'ana', format = '10.5'},

{id = 'Err', description = 'Error between expected and calculated values’,

functions = true, defVal = 'errf', format = '10.5'}

},

...

}

The analytical temperature from node attribute Tana

The node temperature from state var T

The first dimension (x) of the node coordinate

The current simulation time

Err supports functions and its default value is the errf node function.

Model file: Boundary condition

For prescribing Neumann boundary conditions, the Thermo physics provides the ‘surface flux’

boundary condition type where heat flux values are associated with mesh edges. There is no need

to specify insulated borders since, on the FEM method, borders with no prescribed condition will

automatically be insulated.

BoundaryCondition {

id = 'Heated Border',

type = 'surface flux',

mesh = 'mesh',

properties = {

{id = 'q', description = 'Heat flux'},

},

edgeValues = {

{'gridLeft', -1}, -- Negative value since the flow enters the rod

}

}

Boundary condition type for prescribed heat flux

Boundary conditions. Each table line associates an edge set to a flux value, normal to the edges

Solution File

function ProcessScript()

-- Options for printing internal FEM matrices. Uncomment the desired flags before running.

-- Refer to the Fem process documentation for other options

local printOptions = {

-- assembledMatrix = true, -- The assembled matrix will be printed

-- elementMatrices = true, -- All element matrices will be printed

-- assembledVector = true, -- The assembled vector will be printed

-- elementVectors = true, -- All element vectors will be printed

}

-- Creates the FEM solver used for calculating the numerical solution at each time step

local solver = fem.initTransientSolver({'HeatPhysics'}, 'solver', {printOptions = printOptions})

local dt = 0.05 -- The time step

local endt = 10.0 -- Simulation duration

local nsteps = endt / dt -- Number of steps

-- Load VtkLib to enable saving results in the Vtk format

dofile('$SCRIPTS/vtkLib.lua')

The orchestration for this simulation is very similar to the orchestration of the previous example. It

features the global time loop for advancing the simulation. It also shows how to pass some print

options to the Fem process. This options are useful when debugging new physics plugins.

… continues on the next slide

Uncomment the desired lines above for seeing their effect on the output

Use the print options

table defined above

Solution File (continued)

-- Creates the output simulation file

local file = io.prepareMeshFile('mesh', '$SIMULATIONDIR/out/$SIMULATIONNAME.nf', 'nf’,

{'T', 'Tana', 'Err’})

-- Simulation time loop

for i=1, nsteps do

-- Set the current time in the model

setCurrentTime(i*dt)

-- Solve one time step

fem.transientStep(solver, dt)

-- Print step solution

io.printMeshNodeData('mesh', {'coordinate', 'T', 'Tana', 'Err’},

{header_title = true, eval_functions=true})

-- Add step results to the ouptut file using neutral file and vtk formats

io.addResultToMeshFile(file, i * dt)

vtkLib.saveMeshFile('mesh', {'coordinate','T','Tana','Err'}, nil,

'$SIMULATIONDIR/out/$SIMULATIONNAME', {state = i, stateTime = i * dt})

end

-- Close output file

io.closeMeshFile(file)

end

… continued from previous slide

Needed for the nodal user function ‘ana’ to receive the current time

Results
T
e

m
p

e
ra

tu
re

(º
C

)

t = 1 s

E
rr

o
r

(º
C

)

t = 5 s

t = 10 s

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2 2.5 3 3.5 4

T
e
m

p
e
ra

tu
re

Length

Temperature distribution along the rod length for t = 1 s

GeMA

Analytical

4 – STEADY STATE TEMPERATURE

ANALYSIS OF SEDIMENTARY LAYERS

VERSION 1

The Problem

• Analyze the steady state temperature profile for a set of sedimentary

layers subjected to a heat flux at their base and a prescribed surface

temperature.

Reference: Material properties used

on this example are given by

“Fundamentals of Basin and

Petroleum Systems Modeling”,

Hantschel and Kauerauf.

40 mW/m2

Ts = 20 ºC

Disclaimer: The geological model

used in this example is a dummy test

model and does not intend to

resemble any real geological

situation.

Sea level
0 m

1196 m

7694 m

596 m

7694 m

y

Key Example Points

• The model structure for this simulation is similar to the previous ones. The

main features not seen on previous models are:

– How to create the mesh node and element tables “manually” (without using auxiliary

functions) for an heterogeneous mesh composed by quadrilaterals and triangles.

– How to setup several materials and work with anisotropies.

– How to enable heat generation on the model.

– How to parameterize a simulation with used provided values at run-time.

– How to change the units of saved and printed values.

• This example builds heavily on the previous ones and only shows key

difference points. Please refer to the simulation files for the complete

source.
Simulation file: BasinLayers1.lua

Model file: Handling user parameters

GeMA models can be parameterized at run time with user provided values passed as command line

parameters with the –u switch. On this simulation, we will require the user to provide a true or false

value that will be used to enable or disable radiogenic heat generation in our simulation.

Provided parameters are accessed while building the model through the userParams Lua variable.

-- Turns Radiogenic Heat generation on or off by reading the

-- required user provided parameter

if userParams == nil then

print()

print('This simulation must be called with a boolean user parameter to turn')

print('Radiogenic Heat generation on or off.')

print('Please run it passing -u true or -u false as parameters.')

print()

assert(nil) -- Abort the simulation

end

enableQ = userParams

Make sure that the user provided us with a value. If not (userParams == nil),

prints a message and aborts the simulation

Stores the user choice in the enableQ variable for latter use at the solution file

Model file: Material properties
Material properties are given in the usual way. Since our model features 7 different lithologies, our property set table has 7

value lines. To ease the process of attaching lithologies to mesh cells, materials are labeled with their lithology name.

Although this is a steady state problem, our table also includes density and specific heat columns needed by the transient

analysis on example 6.
PropertySet

{

id = 'LithoPSet',

typeName = 'GemaPropertySet',

description = 'Lithological parameters for facies',

properties = {

{id = 'kv', description = 'Grain vertical conductivity @ 20 degC', unit = 'W/(m.K)'},

{id = 'ka', description = 'Grain conductivity anisotropy'},

{id = 'k', description = 'Conductivity', unit = 'W/(m.K)', dim = '2x2',

functions = true, defVal = 'rotk'},

{id = 'rho', description = 'Grain density', unit = 'kg/m3'},

{id = 'cp', description = 'Grain specific heat capacity @ 20 degC', unit = 'J/(kg.K)'},

{id = 'Q', description = 'Grain radiogenic heat generation rate', unit = 'uW/m3'},

{id = ‘h', description = 'Element thickness', unit = 'm', defVal = 1.0},

},

values = {

{id = 'sandstone', rho = 2720, kv = 3.95, ka = 1.15, cp = 855, Q = 0.70},

{id = 'shale', rho = 2700, kv = 1.64, ka = 1.60, cp = 860, Q = 2.03},

{id = 'siltstone', rho = 2710, kv = 2.01, ka = 1.71, cp = 940, Q = 0.96},

{id = 'chalk', rho = 2680, kv = 2.90, ka = 1.07, cp = 850, Q = 0.60},

{id = 'limestone', rho = 2680, kv = 2.00, ka = 1.95, cp = 845, Q = 1.40},

{id = 'dolomite', rho = 2790, kv = 4.20, ka = 1.06, cp = 860, Q = 0.29},

{id = 'diabase', rho = 2800, kv = 2.60, ka = 1.00, cp = 800, Q = 0.18},

}

} Optional name associated to each material row. This last material can be referenced either by its row (7) or by its name (diabase).

Notice that this table does not provides values for

the k and t properties. In their absence, the value

given by defVal will be used, meaning that every

lithology type will have h = 1.0 and k = ‘rotk’.

This example works

with an anisotropic

conductivity. See the

next slide.

k is a 2x2 matrix

instead of a scalar

Model file: Anisotropic conductivity
Layer conductivities are not isotropic. Its value in the direction normal to the layer is much less than the conductivity in the

direction parallel to the layer bedding. The GeMA thermo plugin can work with anisotropic scenarios if the conductivity ‘k’ in

the property set is given as a 2x2 tensor (3x3 for 3D problems). One problem though, is that it expects the tensor to be

aligned with Cartesian axis. A solution is making the conductivity a user function that rotates the tensor aligning it with the

layer dip. In our model, the basic material vertical (normal) conductivity is given by ‘kv’, while the horizontal (parallel)

conductivity is given by multiplying ‘kv’ by an anisotropy factor ‘ka’. Those two properties are not recognized by the physics

plugin, they are used instead by the cell function attached to the expected property ‘k’ to calculate the conductivity tensor.

The layer dip is stored per cell in an attribute associated with the mesh and initialized together with mesh data.

-- User function to rotate the conductivity tensor according to the layer dip

CellFunction

{

id = 'rotk',

parameters = { {src = 'kv'}, -- The grain vertical conductivity

{src = 'ka'}, -- The grain anisotropy factor (kh = kv * ka)

{src = 'dip', unit = 'rad'}, -- The layer dip in radians

},

method = function(kv, ka, dip)

local ca = math.cos(dip)

local sa = math.sin(dip)

local R = Matrix{{ca, -sa}, {sa, ca}} -- Rotation matrix

local K = Matrix{{kv*ka, 0}, {0, kv}} -- Axis aligned conductivity tensor

local rK = R * K * R:t()

return rK:toTable()

end

}

The Matrix call creates a matrix object

assigned to the local variable R.

Matrix objects can be used on

arithmetic expressions producing

other matrix objects (rK, for example).

They export some methods like t()

which returns the transposed matrix

and toTable() that converts the matrix

data to a linearized Lua table in

column major format.

Model file: Mesh definition

To separate the mesh geometry from the control code specifying its characteristics, the geometry is
read from an external file (shared by this example and the next two) through a Lua dofile()call.

The heterogeneous mesh used on this example, combining quad4 and tri3 elements, was created

by a pre-processor and converted to the expected GeMA syntax with a home-made script.

The additional node attribute “burialDepth” is created to store each node’s coordinate, discounting

the bathymetry from its depth. This information will be needed on the next example to calculate

porosities. Its value is initialized through the nodes table.

-- Loads the mesh definition from an external file. The loaded mesh uses a coordinate system

-- with 0.0 at the surface and positive values for deeper layers

local nodes, elements, borders = dofile('$SIMULATIONDIR/BasinLayers_meshData.lua')

Mesh

{

...

-- The mesh also stores a node attribute with the node's burial depth (actual depth - bathymetry)

-- Its value is initialized from the mesh file.

nodeAttributes = {

{id = 'burialDepth', description = 'Burial depth coordinate', dim = 2, unit = 'km', format = '7.4f'},

},

...

} Dimensions for this model are given in km.

Model file: Mesh definition

The additional cell attribute “dip” is created to store the layer dip at each cell. Its value is initialized

through the elements table and is used to align the conductivity tensor to the layer dip, as seen

before. The “phi” Gauss attribute will be used on the next example to store layer porosities at each

element Gauss points. Those values will be initialized from the orchestration script.

Mesh

{

...

-- The mesh stores a cell attribute with the layer dip on that cell.

-- Its value is initialized from the mesh file.

cellAttributes = {

{id = 'dip', description = 'The layer dip (angle between the layer and the horizontal reference).',

unit = 'rad'},

},

-- Attribute used for storing calculated porosity at Gauss points.

-- Its value will be initialized from the orchestration.

gaussAttributes = {

{id = 'phi', description = 'The porosity calculated at Gauss points', unit = 'V/V'},

},

...

} A practical way to specify that phi stores a value

between 0.0 and 1.0 and not a percentage value.

Model file: Mesh data - nodes

The node data from the mesh geometry file is given by a table where each entry is another table

storing node coordinates, followed by the initial values for the burial depth.

local nodeData = {

-- x, y, burialDepth

{ 0.0000, 7.6939, { 0.0000, 6.4976} },

{ 0.3333, 7.6939, { 0.3333, 6.6022} },

{ 0.6553, 7.6939, { 0.6553, 6.7033} },

...

}

...

return nodeData, cellData, borderData

The nodeData table is the first table returned by the

dofile() call used to load the mesh geometry file.

The third value for each node line is used to initialize the

burialDepth attribute. Since the burialDepth is a vector value,

its components are included in a sub-table. Values are given in

the attribute unit (km).

The node data table should store node coordinates,

optionally followed by node attribute initial values (in

their definition order), followed by state variable initial

values (also in their definition order). Missing values are

filled with defaults. For an attribute / state variable value

to be provided, all previous values must be given (a nil

value can be used to represent the default value).

Model file: Mesh data - elements

Mesh elements are grouped by layer and by element type (quad4 elements should be provided in

separate tables from tri3 elements). Each element definition includes the ordered set of element

nodes + the dip value to initialize cell attributes in the same way as node attributes are initialized.

local quad4CellTable_4 = {

-- node list, dip

{ 47, 48, 83, 85, 0.0299 },

{ 85, 86, 46, 47, 0.0299 },

{ 86, 87, 44, 46, 0.0299 },

{ 50, 44, 87, 89, -0.1190 },

...

}

local tri3CellTable_5 = {

-- node list, dip

{ 81, 43, 80, 0.0031 },

{ 43, 81, 42, 0.0031, LithoPSet = 5 },

}

...

local cellData = {

...

{cellType = 'quad4', cellGroup = 'layer35', cellList = quad4CellTable_4, LithoPSet = 3},

{cellType = 'tri3', cellGroup = 'layer35', cellList = tri3CellTable_5, LithoPSet = 3},

...

}

Initial values for the dip attribute

given in the attribute unit (radians)

Dip values for the example mesh

quad4 node numbers in CCW order

Element definition

The element type for a group of elements Table with element definitions for a group of elements

tri3node numbers in CCW order

Specific material value for this element. When

missing, the element uses the default provided

by the cell group

The default LithoPSet value

for this group of elements

The cell group name. If distinct lines of cellData share

the same cellGroup name, they will be merged into a

single group

Model file: Mesh data - borders

Border names are used to apply boundary conditions. In 2D, each named border is given by a list of

mesh edges, each specified by a cell number + an edge number.

Edge numbering for linear 2D elements follows a simple

rule: The edge between the first and second vertices is

edge 1, the edge between the second and third vertices

is edge 2, and so on. Check the documentation for the

complete edge numbering for other elements.

local edgesTable_1 = {

{1091, 3}, {1092, 1}, {1093, 1}, {1094, 3}, {1095, 1}, {1096, 1}, {1097, 3}, {1098, 1}, {1099, 1}, {1100, 1},

{1101, 2}, {1102, 2}, {1103, 2}, {1104, 2}, {1105, 2}, {1106, 2}, {1107, 2}, {1108, 2}, {1109, 2}, {1110, 1},

{1112, 3}, {1113, 3}, {1114, 2}, {1115, 3}, {1116, 1}, {1117, 1}, {1118, 1}, {1119, 3}, {1120, 3}, {1121, 3},

{1122, 1}, {1123, 3}, {1124, 3}, {1125, 3}, {1126, 1}, {1127, 3}, {1128, 3}, {1129, 1},

}

local edgesTable_2 = {

...

}

local borderData = {

{id = 'basinTop', cellList = edgesTable_1},

{id = 'basinBottom', cellList = edgesTable_2},

}

return nodeData, cellData, borderData

The borderData table is the third table returned by

the dofile() call used to load the mesh geometry file

The border name

The cell number The edge number

1

34

2 1 2

3

1

2

3

4

CCW

Node number

Edge number

Model file: Heat flow boundary condition

For this model, the heat flux direction is being specified by a direction vector. Since our base border

is horizontal and the flow normal to the base, we could have skipped the direction and used a -40

value to specify inflow. In order to make the model more general and applicable to other basins with

irregular geometry, the flow direction is given. In that case, the applied flow will be the projection of

the given flow onto the element normal.

-- Basal heat flow boundary condition

BoundaryCondition {

id = 'Basal heat flow',

type = 'surface flux',

mesh = 'mesh',

properties = {

{id = 'q', description = 'Heat flow', unit = 'mW/m2'},

{id = 'qDir', description = 'Heat flow direction', dim = 2}

},

edgeValues = {

{'basinBottom', 40, {0, -1}}, -- Direction is along the negative y

} -- since our depth axis is inverted

}

Boundary condition type for prescribed heat flux

qDir is a vector with 2 components

Its value MUST be normalized

Bottom border name created on the mesh definition

40 mW/m2

y

Solution file: Physics

PhysicalMethod {

id = 'HeatPhysics',

typeName = 'ThermoFemPhysics',

type = 'fem',

mesh = 'mesh',

boundaryConditions = {'Surface-Water border temperature', 'Basal heat flow'},

enableGeneration = enableQ,

properties = {G = 'Q'}, -- Translate propertySet 'Q' to physics expected 'G'

}

Radiogenic heat generation is enabled or disabled according to the value of the enableQ

variable, initialized with the user given parameter at the beginning of the model file.

When heat generation is turned on, the ThermoFemPhysics

plugin expects the volumetric generation rate to be given by

the ‘G’ property. In our property set, as an example, that

value was named ‘Q’. The properties table supplies name

translations for property sets, telling the physics that the

expected ‘G’ property is in fact named ‘Q’.

Solution file: Orchestration
function ProcessScript()

-- Solves the model using the FEM method for linear problems

fem.solve({'HeatPhysics'}, 'NumSolver')

-- Print results (dip values will be converted from radians to degrees)

print('\n\nCalculated results:')

io.printMeshNodeData('mesh', {'coordinate', 'T', 'burialDepth'})

io.printMeshCellData('mesh', {'dip(degree)'})

-- Save results on the out sub-directory of the same directory hosting the simulation model

-- Saved file will have the same name as the simulation file

-- The saveMeshFile() call expects the 'out' sub-directory to exist

-- The scaleFactorY parameter is used to invert the depth values providing a better viewing

-- experience (Remember that our mesh y axis is inverted)

io.saveMeshFile('mesh', '$SIMULATIONDIR/out/$SIMULATIONNAME.nf', 'nf', {'T', 'burialDepth'}, {'dip(degree)'},

{scaleFactorY = -1.0, materialPropertySet = 'LithoPSet'})

-- The mesh can also be saved using the burial depth as the Y coordinate:

io.saveMeshFile('mesh', '$SIMULATIONDIR/out/$SIMULATIONNAME_burial.nf', 'nf', {'T'}, {'dip(degree)'},

{scaleFactorY = -1.0, materialPropertySet = 'LithoPSet', coordAttribute = 'burialDepth'})

end

Although the dip attribute is stored in radians, we want it to be printed / saved in degrees

Specifies which property set table should be saved on the file

Replaces saved mesh node coordinates by the values of the given node property.

On this case, will save a mesh where the y origin is the top layer (no bathymetry).

Depth values are multiplied

by -1 before being saved

Running the simulation

• As seen before, this model expects the user to provide a parameter stating

if it wants to run the simulation with or without considering radiogenic heat

generation.

– User parameters are provided with the –u switch.

• At the command prompt type either
C:\> gema BasinLayers1.lua –u true

to enable radiogenic heat generation or
C:\> gema BasinLayers1.lua –u true

to disable radiogenic heat generation.

• Failure to provide the parameter will generate an error message.

Results: Temperature distribution (ºC)

Depth Burial depth

5 – STEADY STATE TEMPERATURE

ANALYSIS OF SEDIMENTARY LAYERS

VERSION 2

The Problem

• This simulation revisits the previous example by taking into account

layer porosities and non-linearities arising from the conductivity and the

specific heat capacity being functions of the temperature.

• Layer porosities are a function of the layer depth, so
simply using sets of equivalent properties is not a
good solution.

Porosity(%) x Depth

Reference: Mixing laws and temperature dependency

models for conductivity and heat capacity used in this

example where taken from “Fundamentals of Basin and

Petroleum Systems Modeling”, Hantschel and Kauerauf.0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 50 100 150 200 250 300 350

S
p

e
c
if
ic

h
e

a
t
c
a

p
a

c
it
y

(J
/k

g
.K

)

Temperature (oC)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 50 100 150 200 250 300 350

C
o
n

d
u

c
ti
v
it
y

(W
/m

.K
)

Temperature (oC)

Water

Water

Matrix: c20 = 600 to 1200

Matrix: 𝜆20 = 0,5 to 3,5

Gas

Oil

Limestone

Limestone

Key Example Points

• The model structure for this simulation is similar to the previous ones. The

main features not seen on previous models are:

– How to change the material properties table to account for layer porosity and

temperature dependencies.

– How to initialize values at element Gauss points at the orchestration (for storing layer

porosities).

– How to setup a non-linear analysis using the linear FEM process.

• This example builds heavily on the previous ones and only shows key

difference points. Please refer to the simulation files for the complete

source.

Simulation file: BasinLayers2.lua

Model file: Material properties
The set of expected material properties (k, cp, rho and Q) are now given by mixing functions that take grain

properties and the porosity as input parameters. Those functions are also responsible for temperature

corrections and tensor rotations.
PropertySet {

id = 'LithoPSet',

typeName = 'GemaPropertySet',

description = 'Lithological parameters for facies',

properties = {

{id = 'phic', description = 'Compaction coefficient for Athy law', unit = '1/km' },

{id = 'phi0', description = 'Initial porosity for Athy law', unit = '%' },

{id = 'g_rho', description = 'Grain density', unit = 'kg/m3' },

{id = 'g_kv', description = 'Grain vertical conductivity @ 20 degC', unit = 'W/(m.K)' },

{id = 'g_ka', description = 'Grain conductivity anisotropy' },

{id = 'g_cp', description = 'Grain specific heat capacity @ 20 degC', unit = 'J/(kg.K)'},

{id = 'g_Q', description = 'Grain radiogenic heat', unit = 'uW/m3' },

{id = 'rho', description = 'Mixed fluid-grain density', unit = 'kg/m3', defVal = 'rho_phi',

functions = true},

{id = 'k', description = 'Mixed fluid-grain conductivity', dim = '2x2', unit = 'W/(m.K)', defVal = 'rotk_phi_T’,

functions = true},

{id = 'cp', description = 'Mixed fluid-grain specific heat capacity', unit = 'J/(kg.K)', defVal = 'cp_phi_T',

functions = true},

{id = 'Q', description = 'Mixed fluid-grain radiogenic heat', unit = 'uW/m3', defVal = 'Q_phi',

functions = true},

{id = ‘h', description = 'Element thickness', unit = 'm', defVal = 1.0},

},

values = {

{id = 'sandstone', phic = 0.31, phi0 = 41.0, g_rho = 2720, g_kv = 3.95, g_ka = 1.15, g_cp = 855, g_Q = 0.70},

...

}

}

Mixing

functions

Athy law parameters for calculating phi(z).
Matrix grain material properties used for calculating mixed

fluid-grain properties with temperature corrections.

Required properties

by the Thermo Fem

Physics.

Additional properties used

by mixing functions and to

calculate layer porosities.

Model file: Mixing functions
The mixing function for conductivities applies the required temperature corrections to the grain conductivity and to the water

conductivity. Those values are then mixed by a geometric law and used to form the conductivity tensor that will then be

rotated, as seen on the previous example. Other mixing rules are simpler and not shown here. Refer to the simulation file.

-- User function to rotate the conductivity tensor according to the layer dip

CellFunction

{

id = 'rotk_phi_T',

parameters = { {src = 'g_kv'}, -- The grain vertical conductivity

{src = 'g_ka'}, -- The grain anisotropy factor (kh = kv * ka)

{src = 'dip', unit = 'rad'}, -- The layer dip in radians

{src = 'phi', unit = 'V/V'}, -- Porosity

{src = 'T', unit = 'degC'}, -- Interpolated Temperature

},

method = function(kvG, ka, dip, phi, T)

local khG = kvG * ka

-- Calc Water conductivity following Deming model

local fluid

if T < 137 then

fluid = 0.565 + 1.88e-3 * T - 7.23e-6 * T * T

else

fluid = 0.602 + 1.31e-3 * T - 5.14e-6 * T * T

end

-- Calc grain conductivity following Sekiguchi model

local TK = T + 273.15 -- TK = T in Kelvin

local grain_v = 358 * (1.0227*kvG - 1.882) * (1/TK - 0.00068) + 1.84

local grain_h = 358 * (1.0227*khG - 1.882) * (1/TK - 0.00068) + 1.84

-- Fluid and grain are mixed with a geometric law

local mixed_v = (fluid ^ phi) * (grain_v ^ (1-phi))

local mixed_h = (fluid ^ phi) * (grain_h ^ (1-phi))

-- Axis aligned conductivity tensor

local K = Matrix{{mixed_h, 0}, {0, mixed_v}}

-- Rotate tensor aligning with the layer direction

local ca = math.cos(dip)

local sa = math.sin(dip)

local R = Matrix{{ca, -sa}, {sa, ca}}

local rK = R * K * R:t()

return rK:toTable()

end

}

Solution file: Orchestration

function ProcessScript()

-- Before running the simulation, we must init mesh porosity values

initPorosity()

-- Solves the model using the FEM method

-- Since the conductivity is a function of T, the model is non-linear.

-- It could be solved by the non-linear solver, but to show the orchestration

-- flexibility, we will solve it by repeated linear iterations.

local solver = fem.initLinearSolver({'HeatPhysics'}, 'NumSolver')

local r = 1.0

local iter = 1

local maxIter = 10 -- The maximum number of allowed nonlinear iterations

local tol = 1e-5 -- The convergence tolerance

while r > tol and iter <= maxIter do

print('Executing linear step '..iter)

fem.linearStep(solver)

-- Evaluate error

r = fem.linearResidual(solver)

print(string.format(' r = %.6f', r))

iter = iter + 1

end

assert(r <= tol, 'Failed to achieve convergence...')

...

end

The orchestration starts by calling a user defined function to initialize porosity values on the element Gauss

points. The non-linearity due to k(T) is solved by repeated linear iterations. It could also be solved by the non-

linear solver.

The solver object returned by fem.initLinearSolver()

Convergence loop

Executes one linear step

Calculates the L2 norm of the solution error

A FEM problem is ultimately transformed into a

linear system K.x = f. For non-linear problems,

both K and f can be functions of x. After iteration i,

we have the values for x_i. The error measure is

done by building a new matrix K and a new vector f

based on the current x_i estimate and then

calculating the L2 norm of the vector K.x_i – f.

Abort if the maximum number of iterations was reached

Solution file: Initializing porosities

--

-- Initializes element porosity on Gauss points using the Athy porosity model:

-- phi(z) = phi0 * exp(-c*z)

--

-- Where:

-- z : the BURIAL depth (without bathymetry), in m

-- phi0 : initial porosity in v/v (0 to 1)

-- c : compaction coefficient in 1/m

--

function initPorosity()

-- Get the needed accessors. Notice that the accessors will retrieve the data in the

-- needed units (which are different from the specified material units for phi0 and phic)

local m = modelData:mesh('mesh')

local coordAc = assert(m:nodeValueAccessor('burialDepth', 'm'))

local phiAc = assert(m:gaussAttributeAccessor('phi', 'V/V'))

local phi0Ac = assert(m:cellPropertyAccessor('phi0', 'V/V'))

local phicAc = assert(m:cellPropertyAccessor('phic', '1/m'))

local ir, shape, etype -- Cache for integration rules and shape functions

Porosity values are initialized on the element Gauss points by traversing all mesh elements. For each element,

its integration points are traversed and the porosity calculated using the Athy law, based on the Cartesian

coordinate of each point.

… continues on the next slide

Get the mesh object for the named mesh

Get accessor objects for the needed attributes and properties

Accessors are the objects used for querying and

changing values associated to mesh nodes, cells and

Gauss points. To get an accessor, all that is needed is

the attribute/property/state variable name. Accessors

can automatically convert units if the desired unit is

different from the data unit.

Solution file: Initializing porosities

for i=1, m:numCells() do

local e = m:cell(i)

-- Get the elements integration rule and shape functions

if e:type() ~= etype then

etype = e:type()

ir = assert(m:elementIntegrationRule(etype, 1))

shape = assert(e:shape())

end

-- Get a matrix with cell node coordinates

local X = e:nodeMatrix(coordAc, true)

-- Get the values of phi0 and phic for this element

local phi0 = phi0Ac:value(e)

local phic = phicAc:value(e)

-- Loop over the element integration points

for j=1, ir:numPoints() do

local ip = ir:integrationPoint(j) -- Get the integration point natural coordinates...

local coord = shape:naturalToCartesian(ip, X) -- .. and converts them to cartesian coordinates

-- Calc phi at the integration point depth using Athy law

local phi = phi0 * math.exp(-phic*coord(2))

-- Save calculated porosity

phiAc:setValue(e, j, phi)

end

end

end

Loop over all the mesh elements

Get the element object representing element ‘i’

Get the integration rule and the shape function associated

with the current element type. Since they change per

element type, they don’t need to be recovered again if the

current type is equal to the previous one.

Get a matrix with the current element node coordinates using the

burial depth instead of the mesh coordinates as its base.

Cell properties are indexed by the element object e

Loop over all integration points

coord is a vector with dimension 2. The first dimension (x) is accessed through

coord(1) while the second (y) through coord(2).

Gauss attributes are indexed by the element object + the integration point index

A full description of every available method to

interact with GeMA objects is available at the

orchestration reference manual at the GeMA

project page.

Results: Temperature distribution (ºC)

Without porosity and

temperature corrections

With porosity and

temperature corrections

6 – TRANSIENT TEMPERATURE

ANALYSIS OF SEDIMENTARY LAYERS

WITH A TIME DEPENDENT SURFACE

TEMPERATURE

The Problem

• This simulation revisits the previous example by now considering that

the surface temperature is a function of the basin bathymetry and that

the local bathymetry is rising with a constant rate of 200 m / Myr (a

rather large value used for example purposes only).

Reference: The temperature as a function of the

bathymetry was taken from “Crustal Heat Flow”,

Beardsmore and Cull.
0.0

2.0

4.0

6.0

8.0

10.0

12.0

500 1000 1500 2000 2500

T
e
m

p
e
ra

tu
re

 (
ºC

)

Bathymetry (m)

Key Example Points

• The model structure for this simulation is similar to the previous ones. The

main features not seen on previous models are:

– How to specify a boundary condition that changes over time.

– How to setup a non-linear transient analysis using the linear FEM process.

• This example builds heavily on the previous ones and only shows key

difference points. Please refer to the simulation files for the complete

source.

Simulation file: BasinLayers3.lua

Model file: Surface temperature boundary condition

-- Returns the Surface-Water temperature following the model given by

-- Beardsmore & Cull in "Crustal Heat Flow", equations 3.19 to 3.21.

-- Parameters are the bathymetry (in m) and the Latitude (in degrees).

-- This models predicts temperatures that are too high for shallow waters,

-- so if the calculated value is greater than a known surface temperature

-- Ts, that value is used instead.

local function SWT(z, L, Ts)

if z < 20.0 then

return Ts

end

local A = 4.63 + 8.84e-4*L - 7.24e-4*L*L

local B = -0.32 + 1.04e-4*L + 7.08e-5*L*L

local lnTsf = A + B * math.log(z)

local Tf = -1.90 - 7.64e-4*z

local BWT = math.exp(lnTsf) + Tf

return math.min(Ts, BWT)

end

local Latitude = 22

local SurfaceTemperature = 20

… continues on the next slide

Constants with the basin latitude and surface

temperature

Model file: Surface temperature boundary condition
-- Returns the Surface-Water border temperature as a function of the bathymetry

-- and time. The bathymetry is increasing at a constant rate of 200 m/Myr.

NodeFunction {

id = 'swt_bat_t',

parameters = { {src = 'coordinate', dim = 2, unit = 'm'}, -- The depth coordinate

{src = 'time', unit = 'Myr'}, -- The simulation time

},

method = function(z, t)

z = z + 200 * t

return SWT(z, Latitude, SurfaceTemperature)

end

}

-- Surface temperature boundary condition

BoundaryCondition {

id = 'Surface-Water border temperature',

type = 'node temperature',

mesh = 'mesh',

properties = {

{id = 'T', description = 'External temperature applied on the node', unit = 'degC', functions = true},

},

nodeValues = {

{'basinTop', 'swt_bat_t'},

}

}

The bathymetry is increasing at a rate of 200 m / Myr

Solution file: Orchestration

function ProcessScript()

-- Transient simulation parameters

local time = 0.0

local dt = 0.05 -- In Myr. Our time step will be of 50.000 years

local finalTime = 20.0 -- The simulation will run for 20 million years

-- Non-linear loop parameters

local maxIter = 10 -- The maximum number of allowed nonlinear iterations

local tol = 1e-5 -- The convergence tolerance

local r, iter

setCurrentTimeUnit('Myr')

-- Before running the simulation, we must init mesh porosity values

initPorosity()

The orchestration starts by executing a steady state analysis to initialize the basin temperature at t = 0.0. It

then enters the simulation time loop. Like the previous example, at each time step, the non-linearity due to k(T)
is solved by repeated linear iterations.

… continues on the next slide

Tells GeMA that values passed to setCurrentTime() and time intervals passed

to the transient step function are given in million years

Solution file: Orchestration
-- First, lets run a steady state simulation to initialize the basin temperature at t = 0

print(string.format('Calculating initial solution at t = %.2f Myr', 0.0))

local steadySolver = fem.initLinearSolver({'HeatPhysics'}, 'NumSolver')

r = 1.0

iter = 1

while r > tol and iter <= maxIter do

print(' Executing linear step '..iter)

-- Execute a linear step

fem.linearStep(steadySolver)

-- Evaluate error

r = fem.linearResidual(steadySolver)

print(string.format(' r = %.6f', r))

iter = iter + 1

end

assert(r <= tol, 'Failed to achieve initial convergence...')

-- Init result file with the solution at t = 0

local file = io.prepareMeshFile('mesh', '$SIMULATIONDIR/out/$SIMULATIONNAME.nf', 'nf',

{'T', 'burialDepth'}, {'dip(degree)', 'phi(%)', 'k'},

{scaleFactorY = -1.0, materialPropertySet = 'LithoPSet'})

io.addResultToMeshFile(file, 0.0)

… continues on the next slide

Same logic as the steady

state orchestration used on

the previous example.

Solution file: Orchestration
-- Init transient solver

local transientSolver = fem.initTransientSolver({'HeatPhysics'}, 'NumSolver', nil, true)

-- Simulation loop. Will be run for 25 million years

while time < finalTime do

time = time + dt

setCurrentTime(time)

-- Since the conductivity is a function of T, the model is non-linear.

-- It could be solved by the non-linear solver, but to show the orchestration

-- flexibility, we will solve it by repeated linear iterations.

r = 1.0

iter = 1

while r > tol and iter <= maxIter do

-- Execute a linear step

fem.transientLinearStep(transientSolver, dt, iter)

-- Evaluate error

r = fem.transientLinearResidual(transientSolver, dt)

print(string.format(' r = %.6f', r))

iter = iter + 1

end

assert(r <= tol, 'Failed to achieve convergence...')

-- Save results

io.addResultToMeshFile(file, time)

end

-- Close result file

io.closeMeshFile(file)

end

Simulation (time) loop

Non-linear loop

Time step in Myr

This will be a non-linear simulation

Set current simulation time in Myr

Results: Temperature distribution (ºC)

At 0.0 Myr After 20.0 Myr

7 – TRANSIENT TEMPERATURE

ANALYSIS OF SEDIMENTARY LAYERS

WITH A TIME DEPENDENT SURFACE

TEMPERATURE WITH PARALLEL

POROSITY INITIALIZATION

The Problem / Key Example Points

• This simulation revisits the previous example by initializing the porosity

values by traversing mesh cells in parallel

• The model structure for this simulation is similar to the previous ones. The

main features not seen on previous models are:

– How to transform a serial loop traversing mesh cells (or nodes) into a parallel loop

• This example builds heavily on the previous ones and only shows key

difference points. Please refer to the simulation files for the complete

source.

Simulation file: BasinLayers4.lua

Solution file: Orchestration

function initPorosity()

...

for i=1, m:numCells() do

local e = m:cell(i)

...

end

end

function ProcessScript()

...

initPorosity()

...

end

The needed changes are minimum. Below we see the initPorosity() code for both the serial and parallel
versions, side by side to highlight the differences.

Tells GeMA that functions inside the block

defined by the pair SharedCodeBegin / End are

meant to be called in parallel environmentsSharedCodeBegin{}

function initPorosity(taskCells)

...

for e in taskCells do

...

end

end

SharedCodeEnd{}

function ProcessScript()

...

cellParallelCall('mesh', true, 'initPorosity')

...

end

Serial version: Parallel version:

A string with the function

name, not the function itself.

Parallelizes a loop over mesh cells by calling the initPorosity() function from

multiple threads, each receiving as parameter a subset of the mesh cells.

Iterator object defining the subset

of mesh cells that should be

processed by this function call

8 – PHASE CHANGE BY THE

EFFECTIVE HEAT CAPACITY METHOD

The Problem

• This example simulates a solidification problem where a material with

liquidus temperature of -0.15 ºC and solidus temperature of -10.15ºC, initially

at 0.0 ºC, is subjected to a prescribed temperature on its left side of -45 ºC

and -0.15 ºC at the right side.

• The phase change is modeled with the effective heat capacity method:

Reference: “Fundamentals of the

Finite Element Method for Heat and

Fluid Flow”, Lewis at al.

Example 6.7.1

L = 70.26 (Latent heat of solidification)

k = 1.0

rho = 1.0

cp = 1.0

if

if

if

Key Example Points

• The model structure for this simulation is similar to the previous ones. The

main features not seen on previous models are:

– How to setup a non-linear transient analysis using the non-linear FEM process

– Track results at a given node during the simulation

• This example builds heavily on the previous ones and only shows key

difference points. Please refer to the simulation files for the complete

source.

Simulation file: Solidification.lua

Model file: Effective heat capacity

-- User function implementing the concept of effective heat capacity

CellFunction

{

id = 'ceff',

parameters = { {src = 'T', unit = 'degC'},

{src = 'Ts', unit = 'degC'},

{src = 'Tl', unit = 'degC'},

{src = 'cs', unit = 'J/(kg.degC)'},

{src = 'cl', unit = 'J/(kg.degC)'},

{src = 'cf', unit = 'J/(kg.degC)'},

{src = 'L', unit = 'J/kg'},

},

method = function(T, Ts, Tl, cs, cl, cf, L)

if T <= Ts then

return cs

elseif T >= Tl then

return cl

else

return cf + L / (Tl - Ts)

end

end

}

Material properties with the solidus and liquidus

temperatures, latent heat and specific heat for

the solid, liquid an “freezing” states

The interpolated temperature

Solution file: Orchestration
-- The configuration options for the non-linear solver

local solverOptions = {

type = 'transient automatic time step',

timeMax = 5.0, -- The total simulation time

timeInitIncrement = 0.05, -- Time increment

timeMinIncrement = 0.01,

timeMaxIncrement = 1.0,

iterationsMax = 15,

tolerance = {temperature = 1.000E-05},

}

function ProcessScript()

-- For comparison with literature results, we want to keep track of the temperature at x = 1.0

-- This can usually be done by a post-processor but in this example we show how this can also

-- be done easily in GeMA.

local resultAt26 = {} -- A table to store results at node 26 (x = 1.0)

local m = modelData:mesh('mesh') -- Get the mesh object

local T = m:nodeValueAccessor('T') -- And an accessor to query temperature values

-- Creates the output simulation file

local file = io.prepareMeshFile('mesh', '$SIMULATIONDIR/out/$SIMULATIONNAME.nf', 'nf', {'T'})

… continues on the next slide

This set of options controls the behavior of the non-linear

FEM solver. See the FEM process documentation for an

explanation of each available option.

The group name for the simulation state variable (see the state var definition on the

model file). Separating state variables in named groups allows for specifying different

tolerances for each kind of value in multi-physics simulations.

Solution file: Orchestration
-- Load VtkLib to enable saving results in the Vtk format

dofile('$SCRIPTS/vtkLib.lua')

-- Creates the non-linear FEM solver used for calculations

local solver = fem.init({'HeatPhysics'}, 'NumSolver', solverOptions)

local dt = solverOptions.timeInitIncrement

local endt = solverOptions.timeMax

local nsteps = endt / dt

-- Time loop

for i=1, nsteps do

print('------------------')

print(string.format('Temperature iteration - time = %.2f s', i*dt))

print('------------------')

-- Advances the simulation by dt. The solver returns a suggested next time step 'newt'

-- For this example it will be ignored to ease the comparison with results from the literature

local newt = fem.step(solver, dt)

-- Save result using neutral file and vtk formats

io.addResultToMeshFile(file, i*dt)

vtkLib.saveMeshFile('mesh', {'T'}, nil,

'$SIMULATIONDIR/out/$SIMULATIONNAME', {state = i, stateTime = i * dt})

… continues on the next slide

Solver options from the

previous declared table.

Number of simulation steps

Solution file: Orchestration

-- Store current time and the calculated temperature at x = 1.0 to the table resultAt26

-- Each table entry will be a subtable with the current time and temperature

resultAt26[i] = {i*dt, T:value(26)}

end

-- Closes the output file

io.closeMeshFile(file)

-- Print stored results

print()

print('Temperature results at x = 1.0')

print('Time(s) T(degC)')

print('------- --------')

for i=1, nsteps do

print(string.format('%5.2f %8.4f', resultAt26[i][1], resultAt26[i][2]))

end

end

The sub-table storing results saved at the ‘ith’ time step

The stored time for

the ‘ith’ time step
The stored temperature

for the ‘ith’ time step

Get the current temperature value from node 26

Results

T
e

m
p

e
ra

tu
re

(º
C

)
t = 2.5 s

t = 5 s

-35

-30

-25

-20

-15

-10

-5

0

0 1 2 3 4 5

T
e
m

p
e
ra

tu
re

 (
o
C

)

Time (s)

Temperature profile at x = 1m

Non-linear solver

Linear solver

No phase change

