
ECCOMAS Congress 2016
VII European Congress on Computational Methods in Applied Sciences and Engineering

M. Papadrakakis, V. Papadopoulos, G. Stefanou, V. Plevris (eds.)
Crete Island, Greece, 5–10 June 2016

THE GEMA FRAMEWORK – AN INNOVATIVE FRAMEWORK FOR
THE DEVELOPMENT OF MULTIPHYSICS AND MULTISCALE

SIMULATIONS

Carlos A. T. Mendes1, Marcelo Gattass1, and Deane Roehl1

1Tecgraf / PUC-Rio
Rua Marques de Sao Vicente, 225. Rio de Janeiro-RJ. Brazil.

e-mail: {cmendes, mgattass, deane}@tecgraf.puc-rio.br

Keywords: Multiphysics Simulation, Configurable orchestration, Extensible environments,
Framework, Basin modeling

Abstract. This paper summarizes the GeMA (Geo Modelling Analysis) framework, a library
intended to support the development of new multiphysics simulators and its integration with
existing ones. GeMA uses software engineering techniques to allow engineers to focus on the
programming of the physical simulation and letting the framework take care of data manage-
ment and other necessary support functions to develop efficient, professional programs. These
programs are capable of simulating complex problems that may involve multiple physics that
interact in different spatial and time scales. GeMA architecture supports multiple simulation
and coupling paradigms, with particular emphasis given to finite element methods. GeMA sup-
port includes the coupling of different physics, each one with possibly different spatial domain
discretizations (meshes). It has functions to support efficient transfer of state variable values
from one discretization to another. The framework also implements some important concepts of
extensibility, through the combined use of plugins and abstract interfaces, configurable orches-
tration and fast prototyping through the use of the Lua language. In this paper, we also present
some results of a 2D basin modeling test case that couples FEM non-linear temperature cal-
culations, compaction and kinetic oil maturation and generation algorithms. This scenario
includes a time evolving mesh and different time scales among physics.

1



Carlos A. T. Mendes, Marcelo Gattass and Deane Roehl

1 INTRODUCTION

The building of a new physical simulator comprises three major steps. In the first one, the
problem at hand must be studied so that a physical representation can be created for it. This
representation is then mapped to a set of equations that define the mathematical model of the
problem, usually composed of ordinary or partial differential equations. In the second step,
these equations are are then discretized to allow the problem to be solved. Finally, the third
stage represents the construction of a simulation system that implements the models defined in
the previous steps [1].

Clearly, the knowledge and skills necessary to determine the appropriate physical represen-
tation and to create the mathematical model of the problem, are different from those needed to
transform this same model into a computer system capable of simulating the desired phenom-
ena. This dichotomy is even more pronounced when the objective is not the simulation of a
particular scenario, but the simulation of a class of scenarios supporting user given parameters,
in an efficient and robust way.

Ideally, simulators should be developed by multidisciplinary teams. Nevertheless, it is
common that these are implemented by researchers with extensive knowledge of the problem
physics, but limited software engineering skills, resulting in systems that are more error-prone
and difficult to maintain/extend, especially if the resulting system extrapolates the research en-
vironment and is used in a production environment by other users.

Physics and software engineering are different worlds. However, a framework supporting
the development of multiphysics simulations can create a “bridge” between these two worlds,
allowing the engineer to focus on the construction of the physical representation and on the
mathematical model, being supported and guided by the framework to follow best program-
ming practices. As a result, new simulators can be created in less time and with better quality,
compatible with production environments.

The idea behind the GeMA (Geo Modelling Analysis) framework is to bring state of the art
software engineering techniques such as extensibility, reusability, modularity and portability to
engineering physical modeling, leaving engineers free to focus on the mathematical formula-
tion of the physics of the problem. The framework takes care of all the data management and
required support functions, speeding up code development. A central point is that the frame-
work does not dictate how physics are simulated or how multiple physics are coupled. Those
decisions can be made by engineers according to the scenario at hand.

2 THE GEMA FRAMEWORK

Executing a simulation in the GeMA environment is a two-step process. In the first step, the
model data and the solution method description are loaded, defining, respectively, what will be
simulated and how. In the second step, an orchestration script is executed to do the required
calculations (Figure 1).

The orchestration script is the central object of the solution method. Its role is to allow
the user to describe the sequence of processes that should be applied to the model, so that the
desired results are calculated, providing the main simulation loop. This script is written by the
user using the Lua [2] language.

The Lua language is an interpreted language specially built to be embedded into applications,
allowing them to dynamically run user provided programs. It is considered a simple, easy to
learn language that includes some powerful concepts, such as dynamic typing, garbage collec-
tion, functions as first class objects and the use of associative maps for building data structures.

2



Carlos A. T. Mendes, Marcelo Gattass and Deane Roehl

Orchestration script 
execution

Physics

function script()

end

O
rc

h
es

tr
at

io
n

 S
cr

ip
t

Model Data

• Mesh
• Boundary cond.
• Properties
• . . .

Solution Method

• Orchestration 
script

• . . . 

GeMA

Results

Processes

Figure 1: Main steps in a GeMA simulation.

It is an extensible language that allows the creation of domain-specific languages. Widely used
as a language for integrating and extending applications, it is also considered as one of the
fastest available interpreted languages[3].

By adopting a complete programming language which includes, among others, flow control,
functions and support for data structures, instead of a simplified solution that only identifies
the process execution order, the framework gives the orchestration script the freedom to run
complex operations as needed. The GeMA orchestrator has a similar role as the orchestrator
used by the Rocstar framework[4], but the flexibility given by the use of a script, instead of a
C++ API as in Rocstar, allows for users with minimum computer language skills to be able to
create their own orchestration models.

Processes are the basic unit used to describe the solution method and can be written in C++ or
in the Lua language. In general, they are high-level primitives that describe a complete action,
such as running a finite element analysis, transferring data between meshes, adaptively refining
a mesh or saving a set of results.

Inside the framework, processes are abstract interfaces having concrete implementations
given by plugins. Meshes, linear system solvers and other relevant entities are treated the same
way. The use of abstract interfaces to model the main entities of the framework promotes its
extensibility. The use of plugins, among other advantages, forces the existence of a clear sepa-
ration of concepts and interdependencies, ensuring code modularity.

In this way, the combination of extensibility through abstract interfaces and plugins, with

3



Carlos A. T. Mendes, Marcelo Gattass and Deane Roehl

the flexibility introduced by the orchestration script, provides the modeler with all the needed
freedom to define how the simulation will be structured.

The possibility of implementing processes and physics in Lua, instead of in C++, allows for
the framework to be used for rapid prototyping of new ideas, which, once tested and validated,
can be converted into C++ code for greater efficiency, if at all needed.

The current framework implementation includes processes to support solutions based on
the finite element method. These processes, in turn, define abstract physics interfaces, also
implemented by plugins, which are responsible for providing the FEM process with the specific
discrete mathematical formulation for a problem. Other discretization methods are supported
by creating new processes. The framework also supports processes for integration with pre-
existing simulators.

For several reasons, multiphysics models can contain more than one spatial domain dis-
cretization. To support those situations, where there is need to work with multiple meshes, at
multiple scales, including heterogeneous types of elements and possibly representing different
partitions of the spatial domain, the GeMA framework allows the simulation model to contain
a set of meshes and includes processes for implementing data transfer between them, supported
by spatial index data structures.

3 TEST CASES

Several test simulations were implemented to assess the framework correctness and expres-
siveness, including basic tests using the finite element method for stress and temperature calcu-
lation. Stress simulations were carried out with linear and non-linear trusses and with elements
under plane stress state. Temperature simulations were based on heat conduction in steady and
transient states, with several types of boundary conditions and the possibility of using Lua user
defined functions to create temperature dependent material properties, such as thermal conduc-
tivity, making the problem nonlinear. Phase change scenarios were explored by the effective
heat capacity method [5]. Results were compared with analytical models and/or with literature
results.

Multiphysics simulations were tested by coupled stress-temperature models and by a consid-
erably more complex scenario of a 2D sedimentary basin model, described below. This model
includes treatment for several physical phenomena, such as geological layer sedimentation with
mechanical compaction, thermal history and hydrocarbon maturation and generation. The basin
evolution over time requires the use of a dynamic mesh to follow the deposition of sedimentary
layers and igneous intrusions, whose presence makes it necessary to use adaptive time steps in
the simulation. Temperature calculations were made based on the finite element method pro-
cess, implemented in C++. Other calculations, including the mesh evolution over time, were
implemented in Lua to evaluate the environment potential.

Basin modeling consists of a set of techniques designed to study the formation and the evo-
lution of sedimentary basins. Through the use of physical simulation, basin models are used to
characterize the petroleum system and to quantify potential hydrocarbon accumulations, clari-
fying the risks involved in exploration processes. More details can be found in [6].

The basin model under study is provided to the simulator through a mesh representing the
current layer geometry, associated with a table that provides, for each layer, ages for its deposi-
tion start and end. Figure 2 shows the mesh used in the example simulation. Due to confiden-
tiality issues, this model is not a real case, having been built to illustrate the simulator features.
It contains two intrusive layers represented by the “diabase” layers.

Layer compaction and decompaction calculations are done in 1D through equation 1, given

4



Carlos A. T. Mendes, Marcelo Gattass and Deane Roehl

Limestone

Siltstone

Chalk

Diabase

Shale

Sandstone

Dolomite

0.0 10.0x (km)
0.0

8.0

D
ep

th
 (

km
)

Bathymetry

Figure 2: Sample basin model for the test simulation.

by [7], where φ0 and c represent, respectively, the material initial porosity and compression rate,
z1 and z2 are today’s layer top and bottom depths and z′1 and z′2 are the layer top and bottom
depths at the compaction/decompaction moment.

z′2 = z′1 + z2 − z1 −
φ0

c
(e−cz1 − e−cz2) + φ0

c
(e−cz

′
1 − e−cz′2) (1)

Some restrictions were imposed on the current mesh layout to ease simulation mesh evolu-
tion over time and compaction calculations. The mesh should be structured and composed of
strips of vertically aligned quadrilaterals and/or triangles. Each layer should also consist of a
single mesh row. If a material change is necessary within a layer (facies change), that must
occur along a triangle diagonal, so that any vertical mesh edge always have the same material
on both sides, as proposed in [8]. This allows for 1D compaction calculations along vertical
mesh lines, without concerns about which material parameters should be used.

Temperature calculations over time are based on equation 2, where ρ is the material density,
cp is its specific heat capacity at constant pressure, T is the temperature, λ is the thermal con-
ductivity and G is the rate of internal heat generation. This equation is discretized in space with
the finite element method and in time by an implicit method based on finite differences. Applied
boundary conditions are given by the surface temperature, Ts(x, t), and by the heat flow at the
base of the basin, q(x, t), both varying over geological time.

ρcp
∂T

∂t
= ∇ · (λ∇T ) +G (2)

Sedimentary layers are porous media, and, therefore, material properties must reflect the
grain-fluid mixture in each layer. To do so, the model considers that density and internal heat
generation rates are porosity functions, ρ(φ) and G(φ). Specific heat capacity and thermal
conductivity are also functions of the temperature, cp(φ, T ) and λ(φ, T ), turning the problem
into a non-linear one. If desired, the model can also consider that the thermal conductivity

5



Carlos A. T. Mendes, Marcelo Gattass and Deane Roehl

is a function of the oil and gas saturation in the layer λ(φ, T, Sg, So). Mixture models and
temperature dependency models used in the simulator can be found in [6].

Kinetic models are used to quantify the conversion rate of a compound into its derivatives,
and can be used to quantify how the organic matter present in the source rock reacts to changes
in temperature over time, reducing the initial quantity of kerogen and forming hydrocarbons.
They can also be used to predict vitrinite reflectance (Ro), an important maturation indicator.
Equation 3 calculates the fraction of the converted material, depending on the thermal history
T (t) and on the organic matter kinetic properties, given by its activation energyE and frequency
factor A. Assuming that the basins thermal history can be decomposed into multiple periods
with constant heating rate, equation 3 can be solved analytically as shown in [9].

F (t) = 1− e−
∫ t
0 Ae

− E
RT (t) dt (3)

Figure 3 presents a schematic view of the simulation orchestration script, presenting the
coupling model between the required physics and the main processes called in each time step.

Calculate deposition 
and compaction

Calculate Porosity

Initialize transient 
analysis

t = 0s

Calculate 
temperature

Calculate Ro

Calculate HC 
conversion rates

Calculate residue

t = t + Δt

Save results in t

Update mesh if a new 
layer was deposited

Er
ro

r 
> 

to
le

ra
n

ce

Non-linear loop
Thermal conductivity 
= λ(φ, T, Sg, So)

Update Δt 

Figure 3: Schematic view of the basin simulation orchestration script.

The simulation uses a second mesh, initially empty, that is constructed and updated as layers
are deposited to follow the progress of layer deposition and compaction. At each timestep, the

6



Carlos A. T. Mendes, Marcelo Gattass and Deane Roehl

simulator calculates the fraction of the layer that will be deposited, ensuring a constant layer
material deposition rate through time. This fraction is decompacted based on present thickness
to calculate the size of the deposited layer. After deposition, older layers are compacted due to
the weight of the new sediments and mesh node depths are adjusted accordingly.

If a time step involves the beginning of the deposition of a new layer, new elements are in-
cluded in the mesh, and their initial temperature adjusted according to the surface temperature.
If the new layer is presently over an intrusion that has not yet occurred so far in the simula-
tion history, the new layer is “sewn” over the layer below the intrusion. Intrusion layers are
always included instantaneously in a time step, being inserted between two layers, forcing the
reorganization of the mesh elements in the upper one.

After compaction and porosity determination, temperature and hydrocarbon generation cal-
culations are executed and repeated in a non-linear loop until convergence is achieved. The
last process step consists in determining the time step to be used in the next iteration. After an
intrusion, adaptive time steps are used to capture the cooling of the intruded body.

Figure 4 shows porosity, temperature, Ro and converted fraction values calculated at selected
time steps. It is interesting to notice the influence of intrusions in Ro and converted fraction
results. Temperature evolution in time steps following an intrusion event can be observed in
Figure 5, which shows how the influence of the intrusion in the basin temperature history is
localized and dissipates relatively quickly. In 100,000 years the effect has nearly vanished.
Its impact on the maturation and generation of hydrocarbons in nearby rocks are, however,
permanent.

4 CONCLUSIONS

The GeMA framework is, naturally, an extensible environment. The use of an architecture
based on abstract interfaces and plugins allows new functionality to be easily added by third
party users, without the need to modify or recompile existing code. It also promotes a sepa-
ration of concepts and the decoupling between system modules, easing their development and
maintenance.

Despite its current focus on simulations using the finite element method, the entire GeMA
environment is prepared to include new process types, implementing support for other dis-
cretization methods. In particular, the given basin modeling example includes new processes
based on analytical models for compaction, kinetic analysis and mesh evolution that were inte-
grated with the finite element method used for temperature calculations.

The use of an orchestration script based on the Lua language as a central simulation com-
ponent is largely responsible for the flexibility offered by the framework in the creation of
multiphysics simulations, allowing the user to easily define coupling strategies and the actions
to be taken at each time step.

The presented 2D basin modeling example illustrates some of the GeMA framework poten-
tial and flexibility. In its first version, the framework is currently being explored for the integra-
tion of hydro-mechanical simulators and their coupling with new chemical processes physics.
It is being actively developed and will be further extended to deal with parallel simulations.

7



Carlos A. T. Mendes, Marcelo Gattass and Deane Roehl

0.0 35.0 70.0

17.5 52.5Porosity (%)

10.0 97.5 185.0

53.75 141.25Temperature (oC)

0.0 2.35 4.7

1.175 3.525Ro (%)

0.0 50.0 100.0

25.0 75.0Converted fraction (%)

100 Myr 50 Myr 0 MyrGeological time:

Figure 4: Basin analysis results on selected time steps.

ACKNOWLEDGMENT

The authors gratefully acknowledge support from BG E&P Brasil through the “Coupled Ge-
omechanics” project at TecGraf Institute (PUC-Rio) and the strategic importance of the support
given by ANP (Brazils National Oil, Natural Gas and Biofuels Agency) through the R&D levy
regulation.

8



Carlos A. T. Mendes, Marcelo Gattass and Deane Roehl

10.0 505.0 1000.0

257.5 752.5Temperature (oC)

100 years 500 years 1.000 years

5.000 years 10.000 years 50.000 yearsΔt after intrusion:

Figure 5: Temperature evolution in time steps following an intrusion event.

REFERENCES

[1] J. Peir, S. Sherwin, Finite Difference, Finite Element and Finite Volume Methods for
Partial Differential Equations. Handbook of Materials Modeling, 2415–2446, 2005.

[2] R. Ierusalimschy, L. Figueiredo, W. Celes, LuaAn Extensible Extension Language. Soft-
ware: Practice and Experience, Vol. 26, Num. 6, 635–652, 1996.

[3] R. Ierusalimschy, Programming in Lua. 2003.

[4] X. Jiao, G. Zheng, P. A. Alexander, M. T. Campbell, O. S. Lawlor, J. Norris, A. Hasel-
bacher, M. T. Heath, A system integration framework for coupled multiphysics simula-
tions. Engineering with Computers, Vol. 23, Num. 3-4, 293–309, 2006.

[5] R. W. Lewis, P. Nithiarasu, K. N. Seetharamu, Fundamentals of the Finite Element Method
for Heat and Fluid Flow. John Wiley & Sons, 2004.

[6] T. Hantschel, A. I. Kauerauf, Fundamentals of Basin and Petroleum Systems Modeling.
Springer, 2009.

[7] J. G. Sclater, P. A. F. Christie, Continental stretching: An explanation of the post-mid-
cretaceous subsidence of the central north sea basin. Journal of Geophysical Research,
Vol. 85, Num. B7, 3711–3739, 1980.

[8] M. Wangen, Modelling heat and fluid flow in sedimentary basins by the finite element
method. Int. J. Numer. Anal. Methods Geomech., Vol. 15, Num. 10, 705–733, 1991.

[9] R. L. Braun, A. K. Burnham, Analysis of chemical reaction kinetics using a distribution of
activation energies and simpler models. Energy & Fuels, Vol. 1, Num. 2, 153–161, 1987.

9


	INTRODUCTION
	THE GEMA FRAMEWORK
	TEST CASES
	CONCLUSIONS

