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Example set purpose

This examples show:

• How to setup natural (initial) fractures on the model

• How to setup Injection Flow Rate in the model as a boundary condition

• How to setup boundary conditions on enriched degrees of freedom 

(displacement and porepressure)

• How to setup XFEM specific options

• Several different orchestration techniques for simultaneous or sequential 

hydraulic fracturing schemes with a geostatic step for external and internal 

forces equilibrium before the subsequent injection step 



The examples

• Example 1 presents a transient

analysis of a single hydraulic

fracture on a square plate to be

compared with KGD analytical

solution

• Example 2 and 3 present a transient

analysis of a single hydraulic fracture

entering another layer with symmetric

and asymmetric stress contrast to be

compared with Simonson and Fung

analytical solutions, respectively.

Δσ=500 kPa

Δσ=500 kPa

Δσ=1000 kPa

Δσ=500 kPa



The examples

• Example 4 and 5 present a transient

analysis of three simultaneous and

sequential hydraulic fractures,

respectively with a homogeneous

stress state.

• Example 6 presents a transient

analysis of three simultaneous

hydraulic fractures entering another

layers with symmetric stress

contrast varying fracture spacings of

7 and 20 m.

3 2 1

3 2 1



The examples

On this presentation, the first example will present and analyze the complete model source.  Other examples 

will present only relevant parts.  The complete source for all models are available at the example files.

Although this examples try to explain all involved concepts and syntaxes, they are not a substitute for 

reading the GeMA tutorial and additional documentation.

As a convention, all the given examples will generate result files on the “out” directory.



1 – KGD ANALYTICAL MODEL IN K-

VERTEX PROPAGATION REGIME 



The Problem

Injection on a square plate: It is considered a constant injection rate of a

Newtonian, incompressible fluid in plane strain conditions in an infinite

permeable or impermeable, homogeneous elastic medium.

Reference: “Propagation Regimes of

Fluid-Driven Fractures in

Impermeable Rocks”, Detournay, E.

(2004)

Y

XZ

Horizontal well

114 m

210 m
𝜎𝑀𝑎𝑥

𝜎𝑀𝑖𝑛

One Cluster



Key Example Points

• This example presents the basic structure for a hydraulic fracturing 

simulation in GeMA

• In particular it shows how to:

– Structure a GeMA model

– Define natural (initial) fractures in the model

– Setup material values

– Setup a boundary condition for the injection process

– Set up the XFEM specific options 

– Get pressures at the injection point for post-processing analysis 

– Fill empty mesh for results visualization 

Simulation file: KGD.lua



Simulation file: KGD.lua

This file is the main simulation file.  It stores a model description and loads the two auxiliary files 

storing the simulation model and the simulation solution.  Splitting the simulation on those files is 

a convention to separate the description of what will be simulated (the model file) from the 

description of how it will be simulated (the solution file).

-- Load model and solution files for this problem

dofile('$SIMULATIONDIR/$SIMULATIONNAME_model.lua')

dofile('$SIMULATIONDIR/$SIMULATIONNAME_solution.lua')

Macro expanding to the 

directory of this simulation 

Macro expanding to the name of this 

simulation file, without extension

Loads the file “KGD_solution.lua” from the same 

directory as the simulation file



Model file: State variable

Next, the simulation state variable is defined.  State variables are the nodal values calculated by the 

simulation and represent the model degrees of freedom.  For a hydraulic fracturing simulation, state 

variables are:

-- State variables

StateVar{id = 'u', dim = 2, description = 'Displacements in the X and Y directions', unit = 'm', 

format = '8.4f', groupName = 'mechanic'}

StateVar{id = 'a', dim = 2, description = 'Enriched displacement in the X and Y directions', unit = 'm',

format = '8.4f', groupName = 'mechanic'}

StateVar{id = 'P', description = 'Pore pressure degree-of-freedom', unit = 'kPa', 

format = '8.4f', groupName = 'hydraulic'}

StateVar{id = 'Pa', description = 'Enriched pore pressure degree-of-freedom', unit = 'kPa', 

format = '8.4f', groupName = 'hydraulic'}

StateVar{id = 'Pf', description = 'Fracture pressure degree-of-freedom', storage = 'both', unit = 'kPa',

format = '8.4f', groupName = 'hydraulic'}

This state variable will have values for both 

geometry nodes and ghost nodes (internal 

nodes created by the XFEM simulation)

State variables can be associated with different group names.  

Those groups are used for prescribing different numeric tolerances 

for different kinds of degrees of freedom at the solution file



Model file: Material properties
For a hydraulic fracturing simulation, material properties are:

PropertySet

{

id          = 'MatProp',

typeName = 'GemaPropertySet',

description = 'Material properties',

properties = {

{id = 'E',     description = 'Elasticity modulus',  unit = 'kPa'},

{id = 'nu',    description = 'Poisson ratio'},

{id = 'K',     description = 'Hydraulic permeability',  unit = 'm/s'},

{id = 'gw',    description = 'Specific weight of water', unit = 'kN/m3'},

{id = 'Pht',   description = 'Porosity'},

{id = 'SPMax', description = 'Maximum principal stress',  unit = 'kPa'},

{id = 'Gap',   description = 'Initial gap opening',  unit = 'm'},

{id = 'Ufw',   description = 'Dynamic fluid viscosity',  unit = 'kPa*s'},

{id = 'Lkt',   description = 'Leakoff at top',  unit = 'm/(kPa*s)'},

{id = 'Lkb',   description = 'Leakoff at bottom',  unit = 'm/(kPa*s)'},

{id = 'material',  description = 'Mechanical XFEM material type', constMap = constants.Xfem.materialModels},

},

values = {

{E = 17e+6, nu = 0.2,  K = 9.8e-9, gw = 9.81, Pht = 0.2, SPMax = 1.25e3,

Gap = 0.002, Ufw = 1e-7, Lkt = 2e-10, Lkb = 2e-10,  material = 'poroElastic'},

}

}

A map published by the Xfem

plugin with its supported material 

model names

A material type from constants.Xfem.materialModels



--Natural (Initial) fractures on the model

local meshInitialFractures = {

--{{x1,y1}, {x2,y2}}     initial and final crack points coordinates of Natural (Initial) fractures

{ {-10.0, -0.5},  {-10.0, 0.5}},

{ {0.0, -0.5},  {0.0, 0.5}},

{ {10.0, -0.5},  {10.0, 0.5}}, 

}

Model file: Mesh

For a hydraulic fracturing simulation, Natural (Initial) fractures on the model are defined following the 

convention below:

For one crack:

For multiple cracks:

Three cracks

Initial and final crack points coordinates of natural (Initial) fractures must be coincide with an element border

Initial crack 

point coordinate

Final crack point 

coordinate

--Natural (Initial) fractures on the model

local meshInitialFractures = {

--{{x1,y1}, {x2,y2}}     initial and final crack points coordinates of Natural (Initial) fractures

{ {0.0, -0.5},  {0.0, 0.5}}, 

}



Model file: Mesh

… continues on the next slide

Mesh

{

-- General mesh attributes

id          = 'mesh',

typeName = 'Xfem.mesh',

description = 'Plate mesh discretization',

-- Mesh dimensions

coordinateDim = 2,

coordinateUnit = 'cm',

-- State vars stored in this mesh (per node)

stateVars = {'u','a','P','Pa','Pf'},

-- Mesh node coordinates 

nodeData = nodes,

-- Natural fractures

naturalFractures = meshInitialFractures,

The mesh name

Xfem problems MUST use a specific mesh type 

provided by the Xfem plugin

The mesh dimension (2D)

The unit in which node coordinates are given

Associates this mesh with state variables

Sets the table with node coordinates

Associates this mesh with Initial Fractures



Model file: Mesh (continued)

-- Element data

cellProperties = {'MatProp', 'SecProp'},

cellData = elements,

--IntegrationRules

elementRules = {

{quad4 = 2, tri3 = 3}, --Rule set 1

{quad4 = 3, tri3 = 3}, --Rule set 2

},

-- Node attributes

cellAttributes = {

{id = 'pl', description = 'pressure loading applied at a border', dim = 2, unit = 'kPa'},

},

-- Boundary data

boundaryEdgeData = mesh_edges,

}

… continued from previous slide

Associates this mesh with property set MatProp and  SecProp

Sets the table with element definitions

Sets the table with mesh border definitions

Sets the available rule sets for xfem elements



Model file: Boundary conditions

To complete the model file, boundary conditions for prescribing injection flow rates on plate borders

are needed. Injection Flow Rate definition are in m3/s, negative signal means that flow is entering

into the model. Here this condition is defined in a mesh node, then in the solution file is changed to

the crack mouth node or injection point. This is done because initially no crack nodes are defined in

the mesh, they only appear after the preprocessing, then crack nodes are added to the mesh.

BoundaryCondition {

id   = 'bc5',

type = 'node fracture flow',

mesh = 'mesh',

properties  = {

{id = 'qfw',  description = 'concentrated fracture flow', defVal = -9999},

},

nodeValues = {

-- {node, flow rate value}

{1  ,  -0.001},     -- this node will be changed to ghost node in solution file : ProcessScript()  

}

}

Boundary condition name

Boundary condition type for prescribed Injection Flow Rate values

Associates this boundary condition with the mesh named ‘mesh’

B.C. column name

Boundary conditions. Each table line associates a node set to a flow rate value



Solution file: Numerical solver and Physics

The first section of the solution file defines which numerical solver will be used to solve the equation 

system created by the XFEM method.  On this example, we will use a direct matrix solver provided 

by the ArmadilloSolver plugin. 

NumericalSolver {

id          = 'solver',

typeName = 'ArmadilloSolver',

description = 'Simple matrix solver',

}

The solver name

The plugin name used to create the numerical solver

Physics are the objects that provide the set of mathematical equations used to solve the simulation.  

For solving an injection problem, this example will use the Xfem plugin.

PhysicalMethod {

id       = 'HMCoupledXfem',

typeName = 'Xfem.HydroMechanic',

type     = 'fem',

mesh     = 'mesh',

ruleSet = 1, -- The integration rule set that will be used on the simulation

boundaryConditions = {'bc1','bc3','bc4','bc5','bc6'},

materials          = {'poroElastic'},

}

The physics name

The plugin name used to create the physics

Associates this physics with the mesh named ‘mesh’

Associates this physics with a set of boundary conditions

The set of material types used by the simulation



Solution file: solverOptions and xfemOptions

solverOptions and xfemOptions are the objects that provide specific options used to solve the

simulation.

local solverOptions = { 

type               = 'transient nonlinear',

timeMax = 10,                -- Total time of analysis

timeInitIncrement = 0.05,              -- Initial time increment

timeMinIncrement = 1,                 -- Minimum time increment

timeMaxIncrement = 5.0,               -- Maximum time increment

iterationsMax = 15,                -- Maximum number of iterations            

tolerance          = {mechanic = 1e-4, hydraulic = 1e-4}  -- tolerances for convergence criteria

}

local xfemOptions = {

propagationCriteria = 'MaxPS',        -- Maximum principal stress criterium for crack propagation

evaluationZone = 'nonLocalQuad', -- Create a quadrilateral region at the crack tip to compute the average 

-- maximum principal stress of the gauss points which are inside this region

weightFunction = 'uniform',      -- Every gauss point inside the quadrilateral region used for MaxPS has the

-- same weight value even though a point is nearer than other to the crack tip 

geometricTol = 1e-6, -- Geometric tolerance to determine which gauss points are considered for 

-- Maximum principal stress calculation

geoStatic = false,          -- False when no geoStatic step is performed

}

Group names from state variable definitions



Solution file: Orchestration script

Finally, the orchestration script, provided by the ProcessScript() Lua function, drives the simulation 

by calling the XFEM process to execute the simulation.

function ProcessScript()

-- Just a definition of a parameter which represents the mesh object in the orchestration

local m  = modelData:mesh('mesh')

-- Just a definition of a parameter which represents the empty mesh object in the orchestration

local em = modelData:mesh('emptyMesh')

-- Just a definition of a parameter to access the node value of the fracture pressure in the mesh "m"

local pfAcc = m:nodeValueAccessor('Pf')

-- Create the solver model and execute the initial step in which preprocessing (crack nodes 

-- are added to the mesh) is performed. In the xfem.init, the hydromechanical physic, the solver id, 

-- solver options and xfemOptions are passed for the initial step

local solver = xfem.init({'HMCoupledXfem'}, 'solver', solverOptions, xfemOptions)

-- Changing node 1 in bc5 by the second ghost node to inject fluid flow rate

local bc = modelData:boundaryCondition('bc5')

bc:setNode(1, setMeshGhostFlag(2)) -- Second ghost node of the first crack

… continues on the next slide



Solution file: Orchestration script

--The initial state of the calculation is saved in a neutral file for postprocessing purposes

io.saveMeshFile(m, '$SIMULATIONDIR/out/$SIMULATIONNAME.nf', 'nf', {'u','a','P','Pa'},{'S', 'E'}, 

{split = true, saveDisplacements = true})

--This file is created to save the results of each step in one archive for postprocessing

--purposes such as analysis of variables along time

local file = io.prepareMeshFile(m, '$SIMULATIONDIR/out/KGDtotal', 'nf',  

{'u','a','P','Pa','Pf'}, {'S'}, {saveDisplacements = true})

-- The initial state of the analysis is saved

io.addResultToMeshFile(file, 0.0)

--Definition of the file location which would contain the crack pressure along time

local loadPf = io.open(translatePath('$SIMULATIONDIR/out/KGDloadPf.txt'), "w+")

--Write the initial state of the three cracks pressure

loadPf:write("Inc\t Pf\n")

loadPf:write(0, " ", 0.0, "\n")

… continued from previous slide

Saved nodal values 

are the state variable
Save stresses and strains

… continues on the next slide

Save options

The mesh can be 

given either as an object 

(m) or through its id (‘mesh’)



Solution file: Orchestration script

--Definition of the parameters used in the orchestration

local dt = solverOptions.timeInitIncrement

local endt = solverOptions.timeMax

local nsteps = endt / dt

local dstep = 1        --FREQUENCE OF SAVING RESULTS ON EMPTY MESH

local cont = 1        --a counting parameter

local cont2  = dt*dstep --a counting parameter

for i=1, nsteps do

--In the xfem.step, the solver parameters and time step are passed

--Run transient analysis

xfem.step(solver, dt) 

--After the analysis step finished, results are saved in the output file

io.addResultToMeshFile(file, i*dt) 

--Get fracture pressure

local Pfdata = pfAcc:value(setMeshGhostFlag(2))

--write time, and fracture pressure

loadPf:write(i*dt, " ", Pfdata, "\n")

… continued from previous slide

… continues on the next slide



Solution file: Orchestration script

if (i*dt == cont2) then --If a different frequency of saving results is used then save results

--Save results in an empty mesh passing original mesh, empty mesh, solver parameters, displacements,

--pressures and fracture pressures. On the new mesh, Xfem sub-elements are transformed into regular

--mesh elements. Split fractures=true activates a postprocessing tool to visualize 

--fracture aperture in the neutral file 

xfem.copyToElementMesh(m, em, solver, {'u', 'a','P','Pa','Pf'}, {'S', 'E'}, 

{createMissing = true, splitFractures = true})

--save results of each step  in the neutral file

io.saveMeshFile(em,  '$SIMULATIONDIR/out/$SIMULATIONNAME.nf'..'_'..i, 'nf', 

{'u','a','P','Pa','Pf'}, {'S'}, {split = true, saveDisplacements = true})

em:clear()

cont = cont+1

cont2 = cont*dstep*dt

end --end if

end –-end for

--close output files

io.closeMeshFile(file)

loadPf:close()

end

… continued from previous slide



Results: KGD Analytical Model in K-vertex Propagation Regime 

(Detournay, 2004)

Good agreement is obtained between the profile of the crack mouth opening and the analytical solution.

The pressure obtained from numerical simulations is always greater than the pressure obtained analytically

because it neglects the hydro-mechanical coupled behavior of the surrounding porous medium, our model takes

this coupling into account (Carrier & Granet, 2012; Mohammadnejad & Khoei, 2013).

𝜔 𝑥, 𝑡 = 𝜖𝑘 ∗ 𝐿𝑘 ∗ 𝛺 𝜉

𝑃 𝑥, 𝑡 = 𝜖𝑘 ∗ 𝐸′ ∗ 𝛱

𝜖𝑘 =
𝐾′

𝐸′4𝑄0𝑡

1
3

, 𝛺 =
𝜋  1 3

2
1 − 𝜉2 ,

𝐿𝑘 =
𝐸′𝑄0𝑡

𝐾′

2
3

, 𝐾′ = 4𝐾𝐼𝑐
2

𝜋

 1 2

,

𝐸′ =
𝐸

1 − 𝑣2

𝛱 =
𝜋  1 3
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2 – A SINGLE HYDRAULIC FRACTURE 

ENTERING ANOTHER LAYER WITH 

SYMMETRIC STRESS CONTRAST



The Problem

• This example presents a transient analysis of a single hydraulic

fracture entering another layer with symmetric stress contrast to

be compared with Simonson analytical solution

Reference: “Containment of Massive 

Hydraulic Fractures”, Simonson et al.

Y

XZ

One Cluster
Horizontal well

14 m

210 m

50 m

Pay layer

Barrier layer

Barrier layer

𝜎𝑀𝑎𝑥

𝜎𝑀𝑖𝑛
50 m

Δσ=500 kPa

Δσ=500 kPa



Key Example Points

• This example shows how to create a simple orchestration of a geostatic

step which is intended to get equilibrium in the model for the initial state of a

hydraulic fracturing simulation.

• This example shows the orchestration of the SIGINI subroutine which

distributes the initial stress states in the model

• This example builds heavily on the previous one and only shows key

difference points. Please refer to the simulation files for the complete

source.

Simulation file: Simonson.lua



Solution File: SIGINI

--This subroutine mimics the subroutine of the same name in Abaqus to define the initial 

--state of stress in situ

-- Stress accessor 

local accS = m:gaussAttributeAccessor('S',1, true) 

-- node coordinate accessor

local coordAc = m:nodeCoordAccessor()

-- For each element

for i=1, m:numCells() do

local e   = m:cell(i)                              -- element                          

local ir = m:elementIntegrationRule(e:type(), 1)  -- integration rule

local shp = assert(e:shape())                     -- element shape

-- Get elemental node coordinates 

local Xnode = e:nodeMatrix(coordAc, true)

assert(ir:numPoints() == 4) –- verify that elements contain 4 integration points

This orchestration script distributes the initial stress state in the model.

… continues on the next slide



Solution File: SIGINI

-- For each integration point

for j=1, ir:numPoints() do

-- get integration point coordinates

local ip, w = ir:integrationPoint(j)

-- integration point in cartesian coordinates

local coord = shp:naturalToCartesian(ip, Xnode)

-- fill stress acording

local Sv

--These conditionals are set to define different stress state for three layers depending on depth

if (coord(2) >= 14) then

Sv = -2000 --Vertical stress component

Sh = -500  --Horizontal stress component

end

if (coord(2) < 14 and coord(2) > 7) then

Sv = -2000 --Vertical stress component

Sh = -500  --Horizontal stress component

end

if (coord(2) <= 7) then

Sv = -2000 --Vertical stress component

Sh = 0     --Horizontal stress component

end

--fill stress vector to pass it to the XFEM code 

local v = {Sh, Sv, Sh, 0} -- stress vector

accS:setValue(e, j, v)  -- Passing element and gauss point indexes and stress vector to the XFEM code

end   

end 

… continued from previous slide



Solution File: Geostatic Step

-- Create the solver model and execute the Geostatic step in which preprocessing (crack nodes are 

-- added to the mesh) is NOT performed. In the xfem.init, the hydromechanical physic, the solver id, 

-- solver options and xfemOptions are passed for the Geostatic step     

local solver2 = xfem.init({'HMCoupledXfem'}, 'solver', solverOptions, xfemOptions)

--this file is created to save the results of each step in one archive for postprocessing purposes 

--such as analysis of variables along time

local file = io.prepareMeshFile(m, '$SIMULATIONDIR/out/Simonsontotal', 'nf', 

{'u','a','P','Pa','Pf'}, {'S'}, {saveDisplacements=true})

--Definition of the parameters used in the orchestration

local dt = solverOptions.timeInitIncrement

local TimeFin = solverOptions.timeMax

local Time = dt

local nsteps = TimeFin / dt

for i=1, nsteps do

--Run transient analysis

--In the xfem.step, the solver parameters and time step are passed

xfem.step(solver2,dt) 

--After the Geostatic step finished, results are saved in the output file

io.addResultToMeshFile(file, i*dt) 

end

--set current time to zero for the subsequent analysis (Injection Step)   

setCurrentTime(0.0)



RESULTS: Simonson’s Analytical Solution

According to Simonson’s solution (1978), the injection pressure required for fracture penetration into the adjacent

layers with symmetrical in-situ stress contrast is

When the fracture penetrates into the adjacent layers where

the in-situ horizontal stress is greater than that of the

reservoir, the pressure required for fracture propagation

increases (h > 7 m and h< -7 m).

𝑃 = 𝜎𝑟𝑒𝑠 +
𝐾1𝑐

𝜋𝐿
+
2 𝜎𝑏𝑎𝑟𝑟𝑖𝑒𝑟 − 𝜎𝑟𝑒𝑠

𝜋
cos−1

ℎ𝑟𝑒𝑠
2𝐿

ℎ𝑓 = 2𝐿

Δσ=500 kPa

Δσ=500 kPa
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3 – A SINGLE HYDRAULIC FRACTURE 

ENTERING ANOTHER LAYER WITH 

ASYMMETRIC STRESS CONTRAST



The Problem

• This example presents a transient analysis of a single hydraulic

fracture entering another layer with Asymmetric stress contrast to

be compared with Fung analytical solution

Reference: “Calculation of Vertical 

Fracture Containment in Layered 

Formations.”, Fung et al.

Y

XZ

One Cluster
Horizontal well

14 m

210 m

50 m

Pay layer

Barrier layer

Barrier layer

𝜎𝑀𝑎𝑥

𝜎𝑀𝑖𝑛
50 m

Δσ=1000 kPa

Δσ=500 kPa

Simulation file: Fung.lua



RESULTS: Fung’s Semianalytical Solution

Fung et al. (1987) developed a semi-analytical procedure for computing the injection pressure required for fracture

penetration into the adjacent layers with an arbitrary in-situ horizontal stress distribution.

𝐾𝐼𝑚 =
ℎ

2𝜋
.  𝑃 − 𝜎𝑛 𝜋 + 

𝑖=1

𝑛

𝜎𝑖+1 − 𝜎𝑖 .  2 sin
−1

ℎ𝑖
ℎ

  − −1𝑚 1 −
2ℎ𝑖 − ℎ

ℎ

2

𝐾𝐼𝑐1 − 𝐾𝐼𝑐2 =
ℎ

2𝜋
 

𝑖=1

𝑛

 𝜎𝑖+1 − 𝜎𝑖 .  1 −
2ℎ𝑖 − ℎ

ℎ

2

The fracture penetrates farther into the lower layer due to

lower in-situ stress in comparison with the upper layer.

Δσ=1000 kPa

Δσ=500 kPa
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• 4 –TRANSIENT ANALYSIS OF THREE 

SIMULTANEOUS HYDRAULIC 

FRACTURES WITH A 

HOMOGENEOUS STRESS STATE IN 

A SINGLE LAYER AND FRACTURE 

SPACINGS OF 7 AND 20 METERS. 



The Problem

• This example presents a transient analysis of three simultaneous

hydraulic fractures with a homogeneous stress state in a single

layer and fracture spacings of 7 and 20 meters.

Y

XZ

Horizontal well

114 m

210 m
𝜎𝑀𝑎𝑥

𝜎𝑀𝑖𝑛

Three Clusters

Fracture Spacing

Simulation files: 

SimHF7.lua

SimHF20.lua



Multiple Simultaneous Hydraulic Fracturing 

For a simultaneous scheme, stress shadowing effects of closely spaced clusters generates shorter and outward 

deviated side fractures and a straight longer fracture in the middle

Homogeneous stress state, Fracture Spacing =7 m 

35

Horizontal stress

V=0.005 m3

Horizontal stress

V=0.01 m3



Multiple Simultaneous Hydraulic Fracturing 

As fracture spacing is increased (right), the stress shadowing effect decreases allowing all three fractures to propagate 

straight.

Homogeneous stress state, Fracture Spacing =20 m 

36

Horizontal stress

V=0.005 m3

Horizontal stress

V=0.01 m3



Multiple Simultaneous Hydraulic Fracturing 

Due to the stress shadowing effect, fracture propagation occurs with a time lag between middle and side clusters. In

contrast, a synchronized fracture propagation is observed when the spacing is enough to avoid stress interference

between fractures.
37

(FS=7m) (FS=20m)

3 2 1



Multiple Simultaneous Hydraulic Fracturing 

As stress interference on fracture propagation increases, the breakdown pressure required to propagate increases as 

well. Consequently, a pressure difference can be observed between the side and middle fractures.

38

(FS=7m) (FS=20m)

3 2 1



The stress shadowing effect increases the fracture pressure required to propagate (left figure). As middle fracture 

propagates further than the side ones, less pressure needs to be accumulated due to the lower stress interference.  

Multiple Simultaneous Hydraulic Fracturing 

Homogeneous stress state

1 2 3

1 2 3
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• 5 –TRANSIENT ANALYSIS OF THREE 

SEQUENTIAL HYDRAULIC 

FRACTURES WITH A 

HOMOGENEOUS STRESS STATE IN 

A SINGLE LAYER AND A FRACTURE 

SPACING OF 7 AND 20 METERS. 



The Problem

• This example presents a transient analysis of three sequential

hydraulic fractures with a homogeneous stress state in a single

layer and fracture spacings of 7 and 20 meters.

Y

XZ

Horizontal well

114 m

210 m
𝜎𝑀𝑎𝑥

𝜎𝑀𝑖𝑛

Three Clusters

Fracture Spacing

Simulation files: 

SeqHF7.lua

SeqHF20.lua



Multiple Sequential Hydraulic Fracturing 

As fracture spacing is increased (from left figure to right), the stress shadowing effect decreases allowing all three 

fractures to propagate mostly straight.

Homogeneous stress state

42

Horizontal stress, FS=7m

V=0.01 m3

Horizontal stress, FS=20m

V=0.01 m3



Multiple Sequential Hydraulic Fracturing 

As fracture spacing is increased (right), no fracture closing is observed due to less stress shadowing effect and wider 

aperture is obtained for the last injected cluster 

43

3 2 1

Fracture closure 

due to stress 

shadowing effect.



Multiple Sequential Hydraulic Fracturing 

As clusters are injected sequentially, the required pressure to propagate is increased due to the stress interference of the 

previous propagated fractures.

44

Initially no stress 

shadowing effect.

Fracture pressure 

increased to 

propagate.

3 2 1

Stress shadowing 

increases the 

required pressure 

to propagate.

Injection of the third cluster 

induces propagation of the 

second one.



6 –TRANSIENT ANALYSIS OF THREE 

SIMULTANEOUS HYDRAULIC 

FRACTURES ENTERING ANOTHER 

LAYER WITH SYMMETRIC STRESS 

CONTRAST AND FRACTURE 

SPACINGS OF 7 AND 20 METERS. 



The Problem

• This example presents a transient analysis of three simultaneous

hydraulic fractures with a homogeneous stress state in a single

layer and fracture spacings of 7 and 20 meters.

Y

XZ

Three Clusters
Horizontal well

Fracture Spacing

14 m

210 m

50 m

Pay layer

Barrier layer

Barrier layer

𝜎𝑀𝑎𝑥

𝜎𝑀𝑖𝑛
50 m

Simulation files: 

SimHF7SC.lua

SimHF20SC.lua



The stress shadowing effect and the stress contrast between adjacent layers increase the fracture pressure required to

propagate

Multiple Simultaneous Hydraulic Fracturing 

Stress contrast between layers Δσ=500 kPa
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