MechanicalFemPhysics
The GeMA Mechanical FEM Physics Plugin
(Smooth) Mohr-Coulomb with Cap

Introduction

The yield function of Modified Mohr-Coulomb with based as a function of the invariants of stress tensor and desviatoric stress tensor (Zienkiewicz and Nayak, 1972), which includes rounding at the edges (Abbo et al, 2011) and C2 continuous of the yield surface. The cap is introduced as a Heaviside function as proposed by Pelessone (1987) that the only depends of the hydrostatic pressure and it operates as penalty function in the Mohr-Coulomb surface.

This model takes into account the effect of dilatency through the use of non-associated plasticity. The plastification criterion of this model is in agreement with the criterion of rupture, not hardening occurring during the plastic flow. The expression of the yield surface is expressed in terms of three stress invariants \( (p,J_2,\theta) \) as follows:

\begin{eqnarray*}F=\sqrt{{{J}_{2}}{{K}^{2}}\left( \theta \right)+{{\left( a\sin \phi \right)}^{2}}}-{{F}_{s}}\left( p \right){{F}_{cap}}\left( p \right)=0 \end{eqnarray*}

where :

  • \( p\) is the hydrostatic pressure defined as:

    \begin{eqnarray*}p = -\frac{1}{3}I_1 \end{eqnarray*}

  • \( \theta\) is the Lode angle defined as:

    \begin{eqnarray*}\theta =\frac{1}{3}{{\sin }^{-1}}\left( -\frac{3\sqrt{3}{{J}_{3}}}{2{{J}_{2}}^{3/2}} \right),\quad \theta \in \left[ -\frac{\pi }{6},\frac{\pi }{6} \right]\end{eqnarray*}

  • \( I_1 \) is the first stress variant;
  • \( J_2 \) and \( J_3\) are the second and third deviatoric stress invariants, respectively;
  • \( F_s(p) \) is the hydrostatic pressure part of the yield function which is expressed as:

    \begin{eqnarray*}F_s(p) = p\sin\phi + c \cos\phi \end{eqnarray*}

  • \( c\) is the cohesion;
  • \( F_{cap}(p)\) is the cap function;
  • \( a \) is the parameter related to the hyperbolic approximation of the Mohr-Coulomb yield surface in meridional plane;
  • \( K(\theta) \) is the parameter related to the C2 continuous rounding of the vertices in the octahedral plane;
  • \( \phi \) is the friction angle (or dilatation angle in non-associated plasticity) ;

The cap function \( F_s(p) \) is expressed as:

\begin{eqnarray*}{{F}_{cap}}\left( p \right)=1-H\left[ p-{{p}_{a}} \right]{{\left( \frac{p-{{p}_{a}}}{R{{F}_{s}}\left( {{p}_{a}} \right)} \right)}^{2}} \end{eqnarray*}

such that

  • \( H\left[ p-{{p}_{a}} \right]\) is the Heaviside function with argument \( p - p_a\);
  • \( R\) is the cap eccentricity;
  • \( p_a \) is the cap variable;

The C2 continuous rounding parameter of the octahedral plane, as proposed by Abbo et al (2011), is calculated according to:

\begin{eqnarray*} K(\theta) = \Bigg\{ \begin{matrix} A+B\sin 3\theta +C{{\sin }^{2}}3\theta &|\theta| > \theta_t \\ \cos \theta -\frac{1}{\sqrt{3}}\sin \phi \sin \theta & \left| \theta \right|\le {{\theta }_{T}} \\ \end{matrix} \end{eqnarray*}

The term \( \theta_t \) is the transition angle and the constants \( A\), \( B\) and \( C\) are defined as follows:

\begin{eqnarray*} A=-\frac{1}{\sqrt{3}}\sin \phi \left\langle \theta \right\rangle \sin {{\theta }_{T}}-B\left\langle \theta \right\rangle \sin 3{{\theta }_{T}}-C\left\langle \theta \right\rangle {{\sin }^{2}}3{{\theta }_{T}}+\cos {{\theta }_{T}}\end{eqnarray*}

\begin{eqnarray*} B=\frac{\left\langle \theta \right\rangle \sin 6{{\theta }_{T}}\left( \cos {{\theta }_{T}}-\frac{1}{\sqrt{3}}\sin \phi \left\langle \theta \right\rangle \sin {{\theta }_{T}} \right)-6\cos 6{{\theta }_{T}}\left( \left\langle \theta \right\rangle \sin {{\theta }_{T}}+\frac{1}{\sqrt{3}}\sin \phi \left\langle \theta \right\rangle \cos {{\theta }_{T}} \right)}{18{{\cos }^{3}}3{{\theta }_{T}}}\end{eqnarray*}

\begin{eqnarray*}C=\frac{\cos 6{{\theta }_{T}}\left( \cos {{\theta }_{T}}-\frac{1}{\sqrt{3}}\sin \phi \left\langle \theta \right\rangle \sin {{\theta }_{T}} \right)-3\left\langle \theta \right\rangle \sin 3{{\theta }_{T}}\left( \left\langle \theta \right\rangle \sin {{\theta }_{T}}+\frac{1}{\sqrt{3}}\sin \phi \left\langle \theta \right\rangle \cos {{\theta }_{T}} \right)}{18{{\cos }^{3}}3{{\theta }_{T}}} \end{eqnarray*}

Properties

The yield surface of Mohr-Coulomb with cap requires the following properties:

Property Description Type Def. Unit required
E Elastic modulus Scalar kPa Yes
nu Poisson's ratio Scalar Yes
Coh Cohesion Scalar kPa Yes
Phi Angle of internal friction Scalar degree Yes
Psi Angle of dilatation Scalar degree Yes
Pa Cap variable Scalar kPa Yes
R Cap eccentricity Scalar Yes

As way to use the Mohr-Coulomb with cap, the mechanical material type ('materialM') have to bet set as 'capMohrCoulomb' as shown in the example below:

Example:

PropertySet
{
id = 'MatProp',
typeName = 'GemaPropertySet',
description = 'Material properties',
properties = {
{id = 'E', description = 'Elasticity modulus', unit = 'kPa'},
{id = 'nu', description = 'Poisson ratio', unit = ''},
{id = 'Coh', description = 'Cohesion', unit = 'kPa'},
{id = 'Phi', description = 'Angle of internal friction', unit = 'degree'},
{id = 'Psi', description = 'Angle of dilation', unit = 'degree'},
{id = 'Pa', description = 'Cap hardening variable', unit = 'kPa'},
{id = 'R', description = 'Cap eccentricity', unit = ''},
{id = 'materialM', description = 'Mechanical material type', constMap = constants.MechanicalFemPhysics.materialModels},
{id = 'h', description = 'Element thickness', unit = 'm'},
},
values = {
{E = 1.00e+07, nu = 0.48, materialM = 'capMohrCoulomb', h = 1, Coh = 490, Phi = 20, Psi = 20, Pa = 1e10, R = 0.405},
}
}

Units

The Mechanical Fem physics uses internally the international system of units for its calculations, as can be seen above by the default units for properties and attributes. The whole unit system can be replaced through the unitSystem physics attribute, as described at the gemaFemProcessCommonFemPhysicsOptions page.

When making the substitution, the units on the following table should be replaced by the desired units, forming a coherent unit system. The unit system of the material should be also replaced.

local newUnitSystem = {
time = 's',
coord = 'm',
u = 'm',
F = 'kN',
E = 'kPa',
Coh = 'kPa',
Pa = 'kPa',
pressure = 'kPa',
Sws = 'kN/m3',
gr = 'm/2',
pl = 'kPa',
}

References

  1. Abbo, A. J., & Sloan, S. W. (1995). A smooth hyperbolic approximation to the Mohr-Coulomb yield criterion. Computers and Structures, 54(3), 427 .
  2. Abbo, A. J., Lyamin, A. V., Sloan, S. W., & Hambleton, J. P. (2011). A C2 continuous approximation to the Mohr-Coulomb yield surface. International Journal of Solids and Structures, 48, 3001 .
  3. Nayak, G. C., & Zienkiewcz, O. C. (1972). Elasto-plastic stress analysis. A generalization for various constitutive relations including strain softening. International Journal for Numerical Methods in Engineering, 5, 113 .
  4. Pelessone, D. (1989). A modified formulation of the cap model. Gulf Atomics Report GA-C19579 to the Defense Nuclear Agency.

GeMA project main page