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a b s t r a c t

In the simulation of a chain of manufacturing processes, several finite element packages can be employed
and for each process or package a different mesh density or element type may be the most suitable.
Therefore, there is a need for transferring finite element analysis (FEA) data among packages and map-
ping it between meshes. This paper presents efficient algorithms for mapping FEA data between meshes
with different densities and element types. An in-core spatial index is created on the mesh from which
FEA data is transferred. The index is represented by a dynamic grid partitioning the underlying space
from which nodes and elements are drawn into equal-sized cells. Buckets containing references to the
nodes indexed are associated with the cells in a many-to-one correspondence. Such an index makes near-
est neighbour searches of nodes and elements much faster than sequential scans. An experimental eval-
uation of the mapping techniques using the index is conducted. The algorithms have been implemented
in the open source finite element data exchange system FEDES.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Finite element (FE) technology has become very well estab-
lished as a main tool for engineering analysis. Since the early
1980s, engineering analysts have extensively used FE software
for many engineering problems, ranging from a simple elastic anal-
ysis to non-linear deformations of biological structures and crash
simulations. The affordability and versatility of FE software has
helped to spread its popularity [1]. Specialised and general purpose
FE software has been developed using formulations and algorithms
for solid and structural mechanics, heat transfer, thermo-mechan-
ics in solids, fluid dynamics and multi-physics for a variety of engi-
neering applications [2–4]. In manufacturing, many processes
exhibiting different physical phenomena can be involved in the
production process. The simulation of each manufacturing process
requires a careful selection of the most appropriate FE code, mesh
and element type. This implies that different FE codes and meshes
with different element types and densities can be utilised in the
simulation of manufacturing processes chains.

The need for mapping FEA data across different meshes has
arisen in metal forming and forging. The element shape function
is used in [5,6], where the local coordinates are obtained by solv-
ing a system of non-liner equations using the Newton–Raphson
method. In [7], the element shape functions are used for mapping
FE field variables between different linear and quadratic, 2D and
3D element types in the open source finite element data ex-
change system (FEDES), which enables FEA data mapping and
transferring across six commercial FE solvers [8]. Three additional
mapping techniques are implemented in FEDES, namely a method
using the nearest point, a method using fields of points and a
method using elements. FEDES was successfully used for the sim-
ulation of manufacturing process chains of aerospace applications
[7,9,10]. Fernandes et al. [11] develop an algorithm including
extraction of the basic geometrical features, contraction of the
core mesh, generation of a boundary mesh linking the core with
the surface of the workpiece, applications of smoothing proce-
dures to edges and transfer of field variables from the old to
the new mesh. In [12], information between non-matching FE
meshes is transferred. The study concerns the transfer of FE vari-
ables defined at the integration points of the meshes by using
only local element-by-element matrices. A nearest-nodes finite
element method is proposed in [13], where finite elements are
used only for numerical integration while shape functions are
constructed using a set of nodes that are the nearest to a quadra-
ture point. A local multivariate Lagrange interpolation is used to
construct the shape functions. With regard to interoperability of
simulation software, Iványi [14] presents a method using regular
expressions to convert different types of file formats for finite ele-
ment meshes.

In the optimisation of manufacturing process chains, the map-
ping of FE field variables between different meshes needs to be
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fast, as many data transfer operations are required at process,
chain and assembly levels [15]. This requires the development of
new efficient computational techniques to support the existing
mapping methods. The objective of this paper is to present efficient
algorithms for the mapping methods described in [7]. This is
achieved by means of an in-core spatial index built on the mesh
from which FEA data is transferred. The index allows to quickly lo-
cate the node or element searched for, in accordance with the map-
ping method. It has the form of a grid partitioning the underlying
space of the mesh into equal-sized cells. Given a nodal or interpo-
lation point of the mesh that is the destination of the mapping, the
cell in which this point is projected can be accessed in constant
time. The node or element searched for will be located either in
this cell or in one of its neighbours. In our experiments, this tech-
nique has proven to be much faster than a sequential search. The
algorithms have been implemented and tested in FEDES [8].

Multidimensional data structures have been extensively em-
ployed in many areas, such as computer graphics, geographic infor-
mation systems and solid modelling [16]. One of the problems that
they address is to quickly respond to nearest neighbour queries,
the same problem dealt with in this paper. Two similar methods
for decomposing a k-dimensional embedding space into k-dimen-
sional rectangles are presented in [17,18]. The content of a rectan-
gle is stored in a bucket on the disc. The use of a directory in the
form of a k-dimensional array containing the addresses of the
buckets allows to retrieve a record with only two disc accesses
(one to the directory and one to the bucket). While in [17] cell divi-
sion lines are equidistant, in [18] they are not. In the latter work,
for each dimension there exists a linear scale specifying the inter-
vals into which the dimension is partitioned. This paper follows the
approach taken in [17], although nothing is stored on the disc. A
family of spatial indices, called tetrahedral trees, is defined and
analysed in [19]. These trees are octrees and kd-trees built on tet-
rahedral meshes. The aim is to perform spatial queries efficiently.

The paper is organised as follows: Section 2 describes the index
structure and how to access it; Section 3 illustrates how to create
an index; Sections 4 and 5 present the mapping algorithms; Sec-
tion 6 contains an evaluation of the performance of the index cre-
ation and the mapping algorithms; Section 7 contains conclusions.
2. Access structure

The spatial index is built on the mesh containing the FEA data to
transfer and has the form of a grid partitioning the underlying
space into equal-sized cells whose borders are parallel to the coor-
dinate axes. The grid is represented by a 3-dimensional array
whose elements are the cells of the grid. The size of the grid is gi-
ven by the number of cells along each dimension. Cells point to
buckets that contain references to nodes. The elements of those
nodes can also be referenced in the bucket. The correspondence be-
tween cells and buckets is many-to-one, i.e. several cells can point
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Fig. 1. Grid refinement and creation of new buckets. (a) Initial 2 � 2 grid. (b) Bucket A ov
are shared (dashed lines indicate shared regions) and bucket A is split into A1 and A2. (
to the same bucket. The region spanned by a bucket is given by the
union of the cells that share the bucket. Like cells, buckets are pair-
wise disjoint and the union of the regions that they span represents
the entire underlying space.

Given a point in the underlying space, the access structure al-
lows to quickly find the bucket associated with it. A scan of this
bucket will then allow to determine whether or not a node with
the same coordinates as the point has been indexed. Nearby
nodes can be searched for in the same bucket and in nearby buck-
ets. No order is imposed on the nodes in a bucket and any data
structure can be used to represent buckets (e.g. arrays, linked
lists).

Buckets contain references to nodes, not the actual nodes. A
reference could be a pointer or an identifier, depending on the
implementation. Handling references when copying, moving or
comparing nodes is faster then operating directly on the refer-
enced objects. When speaking about nodes we often mean refer-
ences to them and not the nodes themselves. For example, if we
say that a bucket contains a node or that a node is inserted into
a bucket we intend a reference to the node. In FEDES, nodes are
stored in an array separate from the spatial index and a node is
referenced by its index into this array.

The mapping of a node into a cell is a function of its coordinates,
which can be calculated in constant time. Suppose that a grid of
size D1 � D2 � D3 is constructed. Let mini and maxi be, respectively,
the minimum and maximum ith coordinate values over all nodes
of the mesh indexed or being indexed. A node n = (x1, x2, x3) is asso-
ciated to the cell c = (c1, c2, c3), where:
ci ¼

xi�mini
maxi�mini

� Di

j k
if mini 6 xi < maxi

0 if xi < mini

Di � 1 if xi P maxi

8>><
>>:

ð1Þ

for 1 6 i 6 3 (bxc denotes the largest integer not greater than x).
The cases xi < mini and xi > maxi handle points out of the mesh in-
dexed in the case that the mesh that is destination of the map-
ping does not cover exactly the same geometric region as the
mesh indexed. A function getBucket (idx, n) is defined, which re-
turns the bucket, in the index idx, pointed to by the cell associ-
ated with node n according to (1). This function is needed for
both indexing a node (i.e. inserting it into the access structure)
and performing nearest neighbour searches. Arrays are random
access structures, i.e. access to an element takes constant time
(it is independent of the number of elements). Therefore, inser-
tion of a node in the grid can be performed in constant time
when the associated bucket is not full and one keeps track of
the next available slot in it.

The size of the grid is variable and grows as nodes are indexed
and buckets get filled, as it will be described in Section 3.1. On the
contrary, the size of the buckets is constant and when a bucket
overflows (i.e. a node being indexed cannot be inserted in it
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because it is full) a split occurs. This avoids having buckets growing
excessively and slowing down searches. The initial size of the grid
and the size of the buckets must be specified when creating the
index.
3. Indexing

This section shows how to create indices of nodes and indices of
elements, which are used, respectively, by the mapping techniques
that will be presented in Sections 4 and 5.
3.1. Indexing of nodes

At the beginning, each bucket is associated with only one cell.
Nodes are inserted into the index one by one, in the bucket indi-
cated by the function getBucket. When a bucket overflows, the
index needs to be expanded. This happens by splitting the over-
flowing bucket into two. The grid structure may also be refined
by splitting cells and sharing buckets.

There are two types of split, depending on whether the over-
flowing bucket is shared or not. Let us first examine the case
when the overflowing bucket is not shared, since this is the
one that occurs first and causes buckets to be shared. In this case
the grid is refined by splitting all cells along one dimension
(keeping the division lines equidistant), thereby doubling the to-
tal number of cells. The interval which was covered by one cell
along the refined dimension is now covered by two contiguous
cells. The process is illustrated in a 2-dimensional case in Fig. 1
(a) and (b), where the split takes place along the x-axis. The
direction to refine is chosen by cycling through all the three
directions.

The number of buckets is not doubled. Instead, each bucket
except the overflowing one is shared by two contiguous cells
along the dimension that is being refined. The overflowing bucket
is split into two buckets, one for each of the two cells resulting
from the split of the cell originally pointing to the overflowing
bucket. That is, if the cell c pointing to an overflowing bucket b
is split into two cells c1 and c2, then b will be split into two buck-
ets b1 and b2 with, let us say, c1 pointing to b1 and c2 pointing to
b2. The split of b involves the redistribution of its contents be-
tween b1 and b2. The redistribution of a node of b is based on
whether it is located in c1 or c2, according to (1). Afterwards,
the bucket (either b1 or b2) in which to add the node to index
is determined. If there is space in it, the node is inserted. Other-
wise, if all the redistributed nodes have been indexed in this
bucket (i.e. there is again an overflow), then another split with
grid refinement must occur.

The case when the overflowing bucket is shared is simpler, as
the size of the grid does not change. An overflowing bucket b is
split into two buckets: one for the cell in which the node being
indexed is located and one for the other cells sharing b. Fig. 1 (c)
shows the split of an overflowing bucket shared by two cells. If
after the split there is still no space available, a split with grid
refinement is performed.

The first type of split is more expensive computationally, since
it requires that new cells be allocated and pointers be updated.
However, it occurs less often than the second type, because after
a grid refinement all but two buckets are shared and it is likely
that several shared buckets will be split before the next
refinement.

Let us see in more detail the involved operations. The function
createNodeIndex (Function 1) creates an index nodeIdx on a set of
nodes nodes.
Function 1. createNodeIndex (nodeIdx, nodes, xs, ys, zs, bs)
Input: nodes, the nodes to index; xs, ys, zs, the size of the grid
in each dimension; bs, the bucket size

Output: nodeIdx, the index built

1:
 initialiseIndex (nodeIdx, nodes, xs, ys, zs, bs)

2:
 for all n 2 nodes do

3:
 bucket  getBucket (nodeIdx, n)

4:
 if numOfNodes (bucket) < bucketSize (nodeIdx) then

5:
 insertNode (bucket, n)

6:
 else if numOfPointers (bucket) > 1 then

7:
 splitSharedBucket (nodeIdx, bucket, n)

8:
 else

9:
 recRefineGrid (nodeIdx, bucket, n)
10:
 end if

11:
 end for
The following functions are used. The index is initialised with
the function initialiseIndex (nodeIdx, nodes, xs, ys, zs, bs), which
creates a grid of size xs � ys � zs and buckets of size bs, and
determines the minimum and maximum ith coordinate values
over all nodes in nodes. The function numOfNodes (bucket)
returns the number of nodes in bucket. The function bucketSize
(idx) returns the size of the buckets in idx, in terms of number
of nodes that they can contain. The function insertNode (bucket,
n) inserts node n into bucket, assuming that bucket is not full.
The function numOfPointers (bucket) returns the number of cells
pointing to bucket (a pointer counter is stored in the bucket). If
there is more than one pointer to bucket, it means that bucket is
shared. The function splitSharedBucket (Function 2) splits an
overflowing shared bucket, while recRefineGrid (Function 3) splits
an overflowing non-shared bucket and refines the grid.
Function 2. splitSharedBucket (nodeIdx, fullBucket, n)
Input: nodeIdx, an index of nodes; fullBucket, an overflowing
shared bucket; n, the node causing the overflow

Output: nodeIdx, with fullBucket split and n indexed

1:
 tempBucket  copyBucket (fullBucket)

2:
 initialiseBucket (fullBucket, numOfPointers

(tempBucket) - 1)

3:
 createBucket (nodeIdx, n)

4:
 newBucket  getBucket (nodeIdx, n)

5:
 redistributeBucket (nodeIdx, tempBucket)

6:
 if numOfNodes (newBucket) < bucketSize (nodeIdx)

then

7:
 insertNode (newBucket, n)

8:
 else

9:
 recRefineGrid (nodeIdx, newBucket, n)
10:
 end if
In splitSharedBucket, a copy of the overflowing bucket fullBucket
is created with copyBucket. Then fullBucket is emptied with the
function initialiseBucket (bucket, numOfPointers), where numOf-
Pointers specifies the number of cells pointing to bucket, in this case
the old value decremented by one. A new bucket is created with
the function createBucket (idx, n), which also redirects the pointer
in the cell associated with n to the newly created bucket and sets
the pointer counter to one. The other cells pointing to fullBucket
are not changed. The nodes that were initially in fullBucket are
redistributed in the grid using redistributeBucket. If there is space
in the new bucket after redistributing, n is inserted in it. Otherwise
the grid is refined with recRefineGrid (Function 3).
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Function 3. recRefineGrid (nodeIdx, fullBucket, n)
Input: nodeIdx, an index of nodes; fullBucket, an overflowing
non-shared bucket; n, the node causing the overflow

Output: nodeIdx, with a refined grid, fullBucket split and n
indexed

1: bucket  fullBucket
2: repeat
3: refineGrid (nodeIdx, bucket)
4: bucket  getBucket (nodeIdx, n)
5: until numOfNodes (bucket) < bucketSize (nodeIdx)
6: insertNode (nodeIdx, n)

In recRefineGrid, the grid is recursively refined by invoking
refineGrid (Function 4), until there is available space in the bucket
associated with n. Node n will then be inserted in it. Usually the
number of required iterations is very low; most of the times just
one is sufficient as the nodes in bucket are redistributed.
Function 4. refineGrid (nodeIdx, fullBucket)
Input: nodeIdx, an index of nodes; fullBucket, an overflowing
shared bucket

Output: nodeIdx, with a refined grid and fullBucket split up
1: copyIdx = copyIndex (nodeIdx)
2: resize (nodeIdx)
3: for i = 0 ?xSize (nodeIdx) - 1 do
4: for j = 0 ?ySize (nodeIdx) - 1 do
5: for k = 0 ?zSize (nodeIdx) - 1 do
6: if splitAxis (nodeIdx) = XAxis then
7: i1  i/2, j1  j, k1  k
8: else if splitAxis (nodeIdx) = YAxis then
9: i1  i, j1  j/2, k1  k
10: else {splitAxis (nodeIdx) = ZAxis}
11: i1  i, j1  j, k1  k/2
12: end if
13: if getBucket (copyIdx, i1, j1, k1) = fullBucket then
14: createBucket (nodeIdx, i, j, k)
15: else
16: setBucket (nodeIdx, i, j, k, getBucket (copyIdx, i1,

j1, k1))
17: end if
18: end for
19: end for
20: end for
21: redistributeBucket (nodeIdx, fullBucket)

In refineGrid the grid is resized using resize. This operation
doubles the number of cells in the grid, but does not update
the pointers to the buckets. In order to do that, a copy copyIdx
of the index is created with copyIndex before resizing, so that
the pointers can be copied from it. The function copyIndex per-
forms a shallow copy of the index, i.e. it creates a copy of the
cells, including the pointers, but not of the pointed buckets. Each
bucket pointer in copyIdx, except the one for fullBucket, is copied
twice in the resized grid. Suppose, for instance, that the axis that
is split is the x-axis and that i is an even number. For each j and
k, the bucket pointer of the cell (i/2,j, k) of copyIdx is copied into
the cells (i, j, k) and (i + 1,j, k) of nodeIdx. The split axis is given
by the function splitAxis. The setting of the bucket pointer in the
cell (i, j, k) of an index idx to a bucket b is done by invoking set-
Bucket (idx, i, j, k, b). The function getBucket (idx, i, j, k) is similar
to getBucket (idx, n). Instead of using the coordinates of a node to
identify a bucket, it uses directly the position (i, j, k) of a cell
pointing to it. Analogously, the function createBucket (idx, i, j,
k) allocates a new bucket and links the cell (i, j, k) to it. For
the sake of simplicity, two new buckets are actually allocated
in refineGrid and the content of fullBucket is redistributed be-
tween them. Both copyIdx and fullBucket can then be disposed of.
3.2. Indexing of elements

An index of elements is similar to an index of nodes and is
created in a similar way. An element is indexed by indexing
its nodes. The difference from an index of nodes is that, in this
case, a bucket also contains, for each node, a reference to its ele-
ment. If two or more elements have a node in common, that
node will be processed multiple times, each time linking to a
different element. A check can be done to see if a node has al-
ready been referenced in a bucket, so that there exists only
one reference per node, linked to all the elements sharing it.

If one element’s node is indexed in a cell, that element either is
contained in or overlaps with the cell. On the contrary, if an element
overlaps with a cell, the cell may not contain any of the element’s
nodes. Therefore, searching a cell for the elements referenced in it
may not provide all the elements overlapping with the cell. An
exhaustive search requires that also nearby cells be examined.

It is not sufficient to store in a bucket only elements; nodes
must be stored as well. In case of split, elements are redistributed
by redistributing their nodes as described above for indices of
nodes. Elements must be represented explicitly by a list of their
nodes because, given a node indexed in a bucket, it must be possi-
ble to easily find all other nodes of the same element. In FEDES, ele-
ments are stored in an array separate from the spatial index and
the node array, and contain references to their nodes in the node
array. An element is referenced by its index into such an array.

The function createElementIndex (Function 5) creates an index
elemIdx on a set of elements elems. The function for inserting a
node in a bucket, insertNode (bucket, n, e), takes now one more
argument, the element e of the node n to insert. Similarly, the func-
tions splitSharedBucket and recRefineGrid take as additional argu-
ment the element of the node causing the overflow.

Function 5. createElementIndex (elemIdx, elems, xs, ys, zs, bs)
Input: elems, the elements to index; xs, ys, zs, the size of the
grid in each dimension; bs, the bucket size

Output: elemIdx, the index built
1: initialiseIndex (elemIdx, elems, xs, ys, zs, bs)
2: for all e 2 elems do
3: for all n 2 e do
4: bucket  getBucket (elemIdx, n)
5: if numOfNodes (bucket) < bucketSize (elemIdx) then
6: insertNode (bucket, n, e)
7: else if numOfPointers (bucket) > 1 then
8: splitSharedBucket (elemIdx, bucket, n, e)
9: else
10: recRefineGrid (elemIdx, bucket, n, e)
11: end if
12: end for
13: end for
4. Mapping nodes

Suppose that we want to transfer FEA data from a mesh A to a
mesh B. The following two mapping methods use an index built on
the nodes of A to quickly locate the nodes from which transferring.
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4.1. Method using the nearest node

For each nodal or integration point n in B, this method searches
A for the nearest node to n from which transferring FEA data. With-
out a spatial index, this method requires the scan of all nodes in A
and the calculation of the distance between each of them and n.
With a grid index built on A, it is sufficient to locate the grid cell
associated with n using (1) and examine only its nodes and, if nec-
essary, those of nearby cells.

The function findNearestNode (nodeIdx, n) (Function 6) finds the
nearest node to n in the index nodeIdx.

Function 6. findNearestNode (nodeIdx, n)
Input: nodeIdx, an index of nodes; n, the node to map
Output: nearest, the nearest node to n
1:
 minDist  maxDist (nodeIdx)

2:
 searchBucket (getBucket (nodeIdx, n), n, nearest,

minDist)

3:
 i getCellXPos (n), j getCellYPos (n), k getCellZPos

(n)

4:
 search  true

5:
 p  1

6:
 while search = true do

7:
 search  false

8:
 if i - p P 0 then

9:
 searchLowerXPlane (nodeIdx, i, j, k, p, n, nearest,

minDist, search)

10:
 end if

11:
 if i + p < xSize (nodeIdx) then

12:
 searchUpperXPlane (nodeIdx, i, j, k, p, n, nearest,

minDist, search)

13:
 end if

14:
 if j - p P 0 then

15:
 searchLowerYPlane (nodeIdx, i, j, k, p, n, nearest,

minDist, search)

16:
 end if

17:
 if j + p < ySize (nodeIdx) then

18:
 searchUpperYPlane (nodeIdx, i, j, k, p, n, nearest,

minDist, search)

19:
 end if

20:
 if k - p P 0 then

21:
 searchLowerZPlane (nodeIdx, i, j, k, p, n, nearest,

minDist, search)

22:
 end if

23:
 if k + p < zSize (nodeIdx) then

24:
 searchUpperZPlane (nodeIdx, i, j, k, p, n, nearest,

minDist, search)

25:
 end if

26:
 p  p + 1;

27:
 end while

28:
 return nearest
During the search, the variables nearest and minDist contain,
respectively, the nearest node and its distance from n. Initially,
nearest is undefined and minDist is set to the maximum distance
between two points in the grid. First, the cell associated with n is
examined. Then adjacent cells are examined because n may be clo-
ser to a node in one of them. Other cells further away may also be
searched. The search is therefore an iterative process starting from
the cell associated with n and going outwards until the nearest
node is found. At each iteration, the offset p (i.e. the distance in
terms of number of cells) from the cell associate to n is incre-
mented by one.
The function searchBucket (bucket, n, nearest, minDist) searches
bucket for the nearest node to n whose distance from n is less than
minDist. If it is found, it updates both minDist and nearest. The func-
tions getCellXPos (n), getCellYPos (n) and getCellZPos (n) return the
indices, in the grid, of the cell associated with n along, respectively,
the x-, y- and z-axis. Given a cell with index (i, j, k), the nearby cells
considered are (with p = 1, 2, . . .):

� (i � p, j0, k0), for all j � p 6 j0 6 j + p and k � p 6 k0 6 k + p
(searchLowerXPlane)
� (i + p, j0, k0), for all j � p 6 j0 6 j + p and k � p 6 k0 6 k + p

(searchUpperXPlane)
� (i0, j � p, k0), for all i � p 6 i0 6 i + p and k � p 6 k0 6 k + p

(searchLowerYPlane)
� (i0, j + p, k0), for all i � p 6 i0 6 i + p and k � p 6 k0 6 k + p

(searchUpperYPlane)
� (i0, j0, k � p), for all i � p 6 i0 6 i + p and j � p 6 j0 6 j + p

(searchLowerZPlane)
� (i0, j0, k + p), for all i � p 6 i0 6 i + p and j � p 6 j0 6 j + p

(searchUpperZPlane)

Checks on the indices are done to make sure that they are not
out of the grid bounds. The function searchLowerXPlane is shown
in Function 7.

Function 7. searchLowerXPlane (nodeIdx, i, j, k, p, n, nearest,
minDist, search)
Input: nodeIdx, an index of nodes; i, j, k, the indices of the cell
associated with n; p, the offset from the cell (i, j, k) along the
x-axis; n, the node to map; nearest, the nearest node to n
found so far; minDist, the distance between n and nearest

Output: nearest, the nearest node to n found so far; minDist,
the distance between n and nearest; search, indicates
whether to continue searching or not

1: xLowerBound  (i - p) � cellXSize (nodeIdx) + minX
(nodeIdx)

2: if getXCoord (n) - xLowerBound < minDist then
3: searchXPlane (nodeIdx, i - p), max (j - p, 0), min (j + p,

ySize (nodeIdx)), max (k - p, 0), min (k + p, zSize (nodeIdx),
n, nearest, minDist)

4: search  true
5: end if

The other search functions are defined similarly. A cell is exam-
ined only if its distance from n is less than minDist. In fact, if this
condition is not true, the nearest node cannot be in it. For the sake
of simplicity, in searchLowerXPlane only the distance between n
and (i � p, j, k) is calculated. If it is less than minDist, all cells
(i � p, j0, k0), with j � p 6 j0 6 j + p and k � p 6 k0 6 k + p, are exam-
ined. This is accomplished with the function searchXPlane (nodeIdx,
xPlane, yStart, yEnd, zStart, zEnd, n, nearest, minDist), limiting the
indices within the grid bounds.

The search stops when search is false, i.e. when there is no cell
that has not been examined and whose distance from n is less than
minDist. Usually the search stops after very few iterations, unless
there is a considerable difference in density between the two
meshes and the grid is very refined. In this case, locating the nearest
node may involve searching nearby cells with higher values of p.

Since cells can share buckets, the same bucket can be scanned
more then once while searching. To prevent this, scanned buckets
can be flagged as such. A search counter keeps track of the number
of nearest node searches made. A variable (lastSearch) is associated
with each bucket, containing the value of the search counter when
the bucket was last scanned. Thus, when a cell is examined, it is
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possible to determine if the associated bucket has already been
scanned in that nearest node search by comparing lastSearch to
the search counter.
4.2. Method using fields of points

Each nodal or interpolation point n in B, projected in the under-
lying space of A, can be seen as the origin of a new coordinate sys-
tem dividing the space into 8 regions whose borders are parallel to
the coordinate axes. This method searches for the nearest node to n
in each of these regions. The value of a FEA variable to map onto n
is obtained by calculating the weighted mean of the values for the
nearest nodes. In the special case when n coincides with a node m
of A, only the data associated with m is copied. Some regions may
be empty, for example when n is not located inside A. In this case
the mean is calculated only on the neighbours found.

Once the nearest nodes m1, . . ., mk have been found (k 6 8), a
weight wi proportional to the distance di between n and mi is cal-
culated, for 1 6 i 6 k:

wi ¼
Pk

j¼1dj

di
ð2Þ

The value vn to map onto node n is then given by:

vn ¼
Pk

i¼1wivmiPk
i¼1wi

ð3Þ

As with the nearest node method, by using a grid index on A it is
sufficient to locate the grid cell associated with n using (1) and
examine only the nodes in it and nearby cells. A limit on the offset
from the cell associated with n must be set in order to avoid that
empty regions are searched. The search algorithm is similar to
the one for the nearest node method, with the difference that the
nearest node is searched for in each region. For each cell c being
examined, the region it is contained in or the regions it overlaps
with are determined. For each of these regions, let us call it r, if
the distance between c and n is less than the distance between n
and the current nearest node in r, then c is searched. If c overlaps
with more than one region, only the nodes falling in r are
considered.
5. Mapping elements

Suppose that we want to transfer FEA data from a mesh A to a
mesh B. The following two mapping methods use an index built
on the elements of A to quickly locate the elements from which
transferring.

5.1. Method using elements

For each nodal or integration point n in B, this method searches
A for the element with the smallest average distance between its

nodes and n, i.e. the element e that minimises
Pk

i¼1
di

k , where di is
the distance between the ith node of e and n. After locating such
an element, the value of a FEA variable to map onto n is obtained
by calculating the weighted mean of the values for the nodes of
the element, by applying (3) and using (2) as weights. If n coincides
with a node m of A, only the data associated with m is copied. If n is
contained in an element, it is likely that this element will be se-
lected. However, if n is contained in an element and is close to or
on the border with a smaller element, the average distance from
the latter may be smaller.
Using a grid index built on the elements of A, the grid cell c asso-
ciated to n is located by applying (1) and its elements are exam-
ined. The elements of a cell are those of the nodes indexed in the
cell. If there is no element in c, nearby cells are examined, with
increasing offsets from c, until elements are found. Elements are
normally found at very small offsets, unless there is a considerable
difference in density between the two meshes and the grid is very
refined. If there are elements in c, adjacent cells still have to be
examined because n may be contained in an element which over-
laps with c but none of its nodes are in c. In this case it is likely that
such an element is the one searched for. The search stops at the
smallest offset, greater than or equal to a fixed lower bound, where
at least one element has been found.

Since the same element can be associated with more than one
node in the same cell or in different ones, it may be examined more
than once. This is also the case when several cells share the same
bucket. To prevent this, elements examined can be flagged as such.
The same technique described in Section 4.1 for flagging buckets
can be applied.
5.2. Method using the element shape function

For each nodal or integration point n in B, this method searches
A for the element into which n falls. The element shape function for
the corresponding element type is then employed to map FEA data
onto n. The search in the index is performed, as in the previous
method, starting from the cell associated with n and going out-
wards until the element containing n is found.

Different element types described by shape functions have been
developed in the finite element method (FEM). In FEM, shape func-
tions are used to interpolate a variety of FEA state variables (e.g.
displacements, velocities, accelerations, reaction forces, strains,
stresses, temperatures) from nodal points into integration/Gauss
points. Generally, they can be used for mapping from nodal points
into any point inside the element. Given an element with k nodes
m1, . . ., mk, the value vn of a FEA variable mapped onto a point n lo-
cated inside the element is given by [2]:

vn ¼
Xk

i¼1

gmi
vmi

ð4Þ

where gmi
is the element shape function for node mi and vmi

is the
value of the variable for node mi. The explicit formulations for 2D
and 3D, linear and quadratic elements can be found in [20].

Generally, the local coordinates (with respect to the element) of
the integration points are predefined in the finite element code.
This allows the interpolation of FEA variables from nodal points
into integration points by applying directly the element shape
functions. With regard to mapping, while the coordinates of nodes
and integration points are known, the local coordinates are not.
Therefore, the local coordinates must be obtained in order to apply
(4) for mapping FEA data. For triangular and tetrahedron elements,
the local coordinates are obtained by solving a system of linear
equations. For quadrilateral, wedge and hexahedron linear ele-
ments, the local coordinates are obtained by solving a system of
non-linear equation using the Newton–Raphson method [7].

A special case occurs when n does not fall into any element of
the mesh. This is the case when the finite element geometries of
the two meshes are not exactly the same and nodes of B are located
outside A. In this case no FEA data will be mapped using the exact
ranges of the local coordinates. To deal with this scenario, if the
element is not found within a certain offset, the local coordinates
are updated by introducing incremental tolerances and the search
restarts from the cell associated with n.
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6. Experimental evaluation

Experiments were conducted to evaluate the performance of
the algorithms for creating indices of nodes and elements, and
for mapping using such indices. An analysis of the accuracy of
the mapping methods is done in [7], and that is also valid for the
implementations described in this paper. In this section only the
computational efficiency is analysed. Displacements were mapped
between meshes in two simulations of manufacturing chains,
using all the mapping techniques illustrated:

� From a mesh with about 170,000 linear tetrahedron elements
(mesh 1) to a mesh with about 120,000 linear tetrahedron ele-
ments (mesh 10), shown in Fig. 2;
� From a mesh with about 60,000 linear hexahedron elements

(mesh 2) to a mesh with about 80,000 linear tetrahedron ele-
ments (mesh 20), shown in Fig. 3.

The first mesh represents an aero-engine vane component. FEA
data transfer was performed from a heat treatment process to a
macro-machining or bulk material removal process.

All experiments were run on a machine equipped with an Intel
i7-Q740 CPU at 1.73 GHz and 8 GB of RAM. The operating system
was GNU/Linux, kernel version 3.2.0. The algorithms were coded
Fig. 2. Mapping of displacements from a mesh with about 170,000 linear tetrahedron

Fig. 3. Mapping of displacements from a mesh with about 60,000 linear hexahedron
in Pascal, the language in which FEDES is written. The compiler
used was the Free Pascal Compiler, version 2.6.0, with default opti-
misations. The times reported are wall-clock times. Each of them is
the mean of three runs. They were calculated using the Pascal li-
brary function Now(), after killing all non-required processes.

Table 1 shows the parameters for the construction of the indices
and some statistics. Bucket sizes and initial grid sizes were chosen
based on the size of the meshes. As it can be observed, construction
times were very short; only the construction of the element index
for mesh 1 took more than 1 s. This suggests that there is no need
to save on the disc an index of such dimensions for future mapping
operations, as it can be quickly recreated when needed. As it can be
seen from the difference between the initial and the final grid size,
the node and element indices for mesh 1 were refined 5 and 7
times, respectively. While the node and element indices for mesh
2 were refined 2 and 3 times, respectively.

The average bucket occupancy was below 50% in all cases. This
value was calculated with respect to the non-empty buckets. The
memory for a bucket is allocated only when the first node is in-
serted into it. Therefore, for empty buckets it is not actually allo-
cated any memory. For non-empty buckets the entire bucket size
is allocated. A more elaborate strategy would allocate space step-
wise until a maximum size is reached. This would require more
time spent allocating memory but it would save space. Having a
elements (left) to a mesh with about 120,000 linear tetrahedron elements (right).

elements (left) to a mesh with about 80,000 linear tetrahedron elements (right).



Table 1
Parameters and statistics of the indices created.

Mesh Index Bucket size Initial grid size Final grid size Time (s) Buckets Splits Non-empty buckets (%) Avg. bucket occupancy (%)

1 Nodes 40 25 � 25 � 25 100 � 100 � 50 0.07 16,751 1126 18.8 42.8
1 Elements 150 50 � 50 � 50 400 � 200 � 200 1.62 130,723 5723 10.9 31.9
2 Nodes 20 20 � 20 � 20 40 � 40 � 20 0.04 9275 1275 86.2 46.5
2 Elements 60 30 � 30 � 30 60 � 60 � 60 0.14 32,461 5461 67.7 40.5
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smaller bucket size does not necessarily reduce the average bucket
occupancy because this may result in more splits and a larger num-
ber of buckets.

Tables 2–5 contain the execution times for each mapping tech-
nique described, comparing a search in the index built on the mesh
with a sequential search in the mesh. Each mapping technique and
type of search was run with 1, 2, 4 and 8 threads. The used CPU has
4 cores and can therefore run up to 4 threads simultaneously.
However, the CPU’s hyper-threading technology provides 2 logical
units per core so that the operating system can schedule 2 threads
to each core. This means that if two threads are scheduled to one
core and one is not running, that core can execute the other one.
The difference in performance between running 4 and 8 threads
Table 2
Execution times (s) with the method using the nearest node.

Threads Mesh 1 ? Mesh 10 Mesh 2 ? Mesh 20

Sequential Index Sequential Index

1 29.59 1.08 21.80 0.43
2 17.30 0.73 12.59 0.30
4 12.25 0.55 8.85 0.23
8 12.16 0.51 8.83 0.22

Table 3
Execution times (s) with the method using fields of points.

Threads Mesh 1 ? Mesh 10 Mesh 2 ? Mesh 20

Sequential Index Sequential Index

1 94.46 15.89 69.32 2.98
2 56.75 10.29 41.42 2.22
4 40.84 7.64 29.69 1.51
8 39.38 6.90 29.20 1.37

Table 4
Execution times (s) with the method using elements.

Threads Mesh 1 ? Mesh 10 Mesh 2 ? Mesh 20

Sequential Index Sequential Index

1 1071.61 23.96 217.30 9.01
2 590.70 14.46 127.09 5.72
4 355.74 9.63 89.93 3.91
8 297.19 6.48 86.80 3.43

Table 5
Execution times (s) with the method using the element shape function.

Threads Mesh 1 ? Mesh 10 Mesh 2 ? Mesh 20

Sequential Index Sequential Index

1 477.26 45.71 116.29 10.31
2 285.33 26.39 70.90 9.41
4 199.95 24.67 50.93 8.07
8 158.83 24.03 50.80 6.96
depends on the application and is not always significant, as it
can be noticed in this experimentation.

The parallelism is at the data level. The threading code works by
dividing in equal chunks among the running threads the nodes of
the mesh which is the destination of the mapping. All threads exe-
cute in parallel the same code but on different chunks of data. They
therefore access simultaneously the source mesh (in the case of
sequential search) or the index built on it (in the case of search
in an index). The access is read-only, so there is no synchronisation
issue.

It can be observed that searches in an index were much faster
than sequential searches, even including the index build time.
The mapping times indicate that, for sequential searches, the tech-
niques can be ordered from the fastest to the slowest as follows:
method using the nearest node, method using fields of points,
method using the element shape function, method using elements.
For searches in an index, the order is different: method using the
nearest node, method using fields of points, method using ele-
ments, method using the element shape function. (With the first
mesh and 8 threads, the method using elements appeared to per-
form roughly as the method using fields of points.)

Generally, execution times with indices can be improved by
increasing the initial grid dimension or the bucket size. This re-
duces the number of splits, thereby shortening the index creation
time. In addition, it results in fewer shared buckets. As a conse-
quence, searching in the index is faster, because the likelihood of
scanning more than once the same bucket is lower.
7. Conclusions

An in-core spatial index has been proposed to speed up the
mapping of FEA data between different meshes employed in the
simulation of a chain of manufacturing processes. The index has
the form of a grid partitioning the underlying space of the mesh
on which it is built into equal-sized cells. For each nodal or inter-
polation point of the mesh onto which FEA data is being trans-
ferred, a search in the index is performed to find the node or
element to use for interpolation.

Algorithms for the creation and use of such an index have been
described. Also, they have been evaluated in two cases where dis-
placements were mapped between meshes with number of ele-
ments in the range 80,000–170,000. In particular, the
implementation of four mapping techniques have been presented:
a method using the nearest node, a method using fields of points, a
method using elements and a method using the element shape
function. The first two techniques involve a mapping from nodes
to nodes and require an index of nodes. The last two involve a map-
ping from elements to nodes and require an index of elements. For
each of them, the performance of the mapping with the use of an
index has proven to be much faster than a sequential search in
all cases analysed, even including the index build time.

Search in an index can be performed in parallel by several
threads. Experiments were run with 1, 2, 4 and 8 threads, with
each thread operating on a separate chunk of data. The construc-
tion of the index took less than 2 s in all cases. This suggests that,
for meshes of the dimensions analysed, there is no need to save on
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the disc the created index when it is needed for future mappings. A
new index can always be created ‘‘on the fly’’. Performance of index
creation and mapping can still be improved by increasing the ini-
tial grid dimension and the bucket size. There is some memory
overhead due to the index structure, which should not generally
be an issue. Anyway, it can be reduced by a stepwise bucket alloca-
tion strategy.

It would be interesting to evaluate this indexing technique with
larger meshes (with millions of elements) and on distributed com-
puting systems, and to compare it with other indexing techniques.
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