MechanicalFemPhysics
The GeMA Mechanical FEM Physics Plugin
Mechanical Continuum Material

The mechanical continuum material is divided in the following materials:

Elastic

The elastic material requires the following properties:

Property Description Type Def. Unit required
E Elasticity modulus Scalar kPa Yes
nu Poisson ratio Scalar Yes

Example:

PropertySet
{
id = 'MatProp',
typeName = 'GemaPropertySet',
description = 'Material properties',
properties = {
{id = 'E', description = 'Elasticity modulus', unit = 'kPa'},
{id = 'nu', description = 'Poisson ratio', unit = ''},
},
values = {
{E = 2e+07, nu = 0.3},
}
}

Von Mises

The von Mises material requires the following properties:

Property Description Type Def. Unit required
E Elasticity modulus Scalar kPa Yes
nu Poisson ratio Scalar Yes
Sy Yield stress Scalar kPa Yes
K Plastic Modulus Scalar No

Example:

PropertySet
{
id = 'MatProp',
typeName = 'GemaPropertySet',
description = 'Material properties',
properties = {
{id = 'E', description = 'Elasticity modulus', unit = 'kPa'},
{id = 'nu', description = 'Poisson ratio', unit = ''},
{id ='Sy', description = 'yield stress', unit = 'kPa'},
{id = 'K', description = 'plastic modulus', unit = ''},
},
values = {
{E = 1e+07, nu = 0.24, Sy = 16000, K = 10},
}
}

Druker-Prager

The Drucker-Prager material requires the following properties:

Property Description Type Def. Unit required
E Elasticity modulus Scalar kPa Yes
nu Poisson ratio Scalar Yes
Coh Cohesion Scalar kPa Yes
Phi Angle of internal friction Scalar (*) Yes
Psi Angle of dilation Scalar (*) Yes

(*) The angle of internal friction and dilation must be defined in degree.

Example:

PropertySet
{
id = 'MatProp',
typeName = 'GemaPropertySet',
description = 'Material properties',
properties = {
{id = 'E', description = 'Elasticity modulus', unit = 'kPa'},
{id = 'nu', description = 'Poisson ratio', unit = ''},
{id = 'Coh', description = 'Cohesion', unit = 'kPa'},
{id = 'Phi', description = 'Angle of internal friction', unit = ''},
{id = 'Psi', description = 'Angle of dilation', unit = ''},
},
values = {
{E = 1e+07, nu = 0.24, Coh = 100, Phi = 20, Psi = 20},
}
}

Modified Mohr Coulomb

The Modified Mohr Coulomb is based on the hyperbolic Mohr Coulomb model proposed by Abbo. This material requires the following properties:

Property Description Type Def. Unit required
E Elasticity modulus Scalar kPa Yes
nu Poisson ratio Scalar Yes
Coh Cohesion Scalar kPa Yes
Phi Angle of internal friction Scalar (*) Yes
Psi Angle of dilation Scalar (*) Yes

(*) The angle of internal friction and dilation must be defined in degree.

Example:

PropertySet
{
id = 'MatProp',
typeName = 'GemaPropertySet',
description = 'Material properties',
properties = {
{id = 'E', description = 'Elasticity modulus', unit = 'kPa'},
{id = 'nu', description = 'Poisson ratio', unit = ''},
{id = 'Coh', description = 'Cohesion', unit = 'kPa'},
{id = 'Phi', description = 'Angle of internal friction', unit = ''},
{id = 'Psi', description = 'Angle of dilation', unit = ''},
},
values = {
{E = 1e+07, nu = 0.24, Coh = 100, Phi = 25, Psi = 25},
}
}

Fractured Rock

The Fractured rock material considers the equivalent behavior of an intact rock and sets of discontinuities. This material requires the following properties:

Property Description Type Def. Unit required
E Elasticity modulus Scalar kPa Yes
nu Poisson ratio Scalar Yes
Knf Normal elastic stiffness of fracture Scalar /vector kPa/m Yes
Ksf shear elastic stiffness of fracture Scalar /vector kPa/m Yes
Sfr Fracture spacing Scalar /vector m Yes
Dip Angle of Dip Scalar /vector (*) Yes
Strike Angle of Strike Scalar /vector (*) Yes

(*) The Dip and Strike angle must be defined in degree.

Example: An intact rock with two sets of fractures

PropertySet
{
id = 'MatProp',
typeName = 'GemaPropertySet',
description = 'Material properties',
properties = {
{id = 'E', description = 'Elasticity modulus', unit = 'kPa'},
{id = 'nu', description = 'Poisson ratio', unit = ''},
{id = 'Knf', description = 'Normal elastic stiffness of fracture', units = 'kPa/m', dim = '2'},
{id = 'Ksf', description = 'shear elastic stiffness of fracture', units = 'kPa/m', dim = '2'},
{id = 'Sfr', description = 'Fracture spacing', units = 'm', dim = '2'},
{id = 'Dip', description = 'Angle of Dip', units = '', dim = '2'},
{id = 'Strike', description = 'Angle of Strike', units = '', dim = '2'},
},
values = {
{E = 66.0e+06, nu = 0.25, Knf = {13.9e+06, 27.0e+06 }, Ksf = {6.95e+06, 13.0e+06}, Sfr = {0.1, 0.25}, Dip = {30, 20}, Strike = {0, 90}},
}
}

Isotropic Damage Model

See isotropicDamage

Solidifying Kelvin Chain

The Solidifying Kelvin Chain material considers the Solidication Theory proposed by Bazant applied in Kelvin chains to represent the basic creep of concrete.

This material requires the following properties:

Property Description Type Def. Unit Required
E0 Elastic modulus of outer spring Scalar kPa Yes
nu Poisson`s ratio Scalar Yes
Ei Elastic moduli of Kelvin chain Scalar /vector kPa Yes
tau Retardation times of Kelvin chain Scalar /vector day Yes
alpha (*) Aging alpha factor Scalar Yes

(*) If alpha is declared equal to zero, the material will not have aging.

Example: Solidifying Kelvin chain with three elements.

-- Number of Kelvin elements
local kelDim = 3
PropertySet
{
id = 'MatProp',
typeName = 'GemaPropertySet',
description = 'Material properties',
properties = {
{id = 'E0', description = 'Elastic modulus of outer spring', unit = 'kPa' },
{id = 'nu', description = 'Poisson ratio', unit = '' },
{id = 'Ei', description = 'Elastic modulus of kelvin chain', dim = kelDim, unit = 'MPa' },
{id = 'tau', description = 'Retardation times of kelvin chain', dim = kelDim, unit = 'day' },
{id = 'alpha', description = 'Aging alpha factor', unit = '' },
{id = 'materialM', description = 'Mechanical material type', constMap = constants.MechanicalFemPhysics.materialModels},
},
values = {
{E0 = 43.2e+06, nu = 0.2, Ei = {76.9e+06, 225.5e+06, 65.2e+06}, tau = {1, 10, 100}, alpha = 0.76, materialM = 'solidifyingKelvinChain'},
}
}

See more about Solidifying Kelvin chain.

Returns to Mechanical continuum material.

GeMA project main page