The mechanical continuum material is divided in the following materials:
Elastic
The elastic material requires the following properties:
Property | Description | Type | Def. Unit | required |
E | Elasticity modulus | Scalar | kPa | Yes |
nu | Poisson ratio | Scalar | – | Yes |
Example:
PropertySet
{
id = 'MatProp',
typeName = 'GemaPropertySet',
description = 'Material properties',
properties = {
{id = 'E', description = 'Elasticity modulus', unit = 'kPa'},
{id = 'nu', description = 'Poisson ratio', unit = ''},
},
values = {
{E = 2e+07, nu = 0.3},
}
}
Von Mises
The von Mises material requires the following properties:
Property | Description | Type | Def. Unit | required |
E | Elasticity modulus | Scalar | kPa | Yes |
nu | Poisson ratio | Scalar | – | Yes |
Sy | Yield stress | Scalar | kPa | Yes |
K | Plastic Modulus | Scalar | – | No |
Example:
PropertySet
{
id = 'MatProp',
typeName = 'GemaPropertySet',
description = 'Material properties',
properties = {
{id = 'E', description = 'Elasticity modulus', unit = 'kPa'},
{id = 'nu', description = 'Poisson ratio', unit = ''},
{id ='Sy', description = 'yield stress', unit = 'kPa'},
{id = 'K', description = 'plastic modulus', unit = ''},
},
values = {
{E = 1e+07, nu = 0.24, Sy = 16000, K = 10},
}
}
Druker-Prager
The Drucker-Prager material requires the following properties:
Property | Description | Type | Def. Unit | required |
E | Elasticity modulus | Scalar | kPa | Yes |
nu | Poisson ratio | Scalar | – | Yes |
Coh | Cohesion | Scalar | kPa | Yes |
Phi | Angle of internal friction | Scalar | (*) | Yes |
Psi | Angle of dilation | Scalar | (*) | Yes |
(*) The angle of internal friction and dilation must be defined in degree.
Example:
PropertySet
{
id = 'MatProp',
typeName = 'GemaPropertySet',
description = 'Material properties',
properties = {
{id = 'E', description = 'Elasticity modulus', unit = 'kPa'},
{id = 'nu', description = 'Poisson ratio', unit = ''},
{id = 'Coh', description = 'Cohesion', unit = 'kPa'},
{id = 'Phi', description = 'Angle of internal friction', unit = ''},
{id = 'Psi', description = 'Angle of dilation', unit = ''},
},
values = {
{E = 1e+07, nu = 0.24, Coh = 100, Phi = 20, Psi = 20},
}
}
Modified Mohr Coulomb
The Modified Mohr Coulomb is based on the hyperbolic Mohr Coulomb model proposed by Abbo. This material requires the following properties:
Property | Description | Type | Def. Unit | required |
E | Elasticity modulus | Scalar | kPa | Yes |
nu | Poisson ratio | Scalar | – | Yes |
Coh | Cohesion | Scalar | kPa | Yes |
Phi | Angle of internal friction | Scalar | (*) | Yes |
Psi | Angle of dilation | Scalar | (*) | Yes |
(*) The angle of internal friction and dilation must be defined in degree.
Example:
PropertySet
{
id = 'MatProp',
typeName = 'GemaPropertySet',
description = 'Material properties',
properties = {
{id = 'E', description = 'Elasticity modulus', unit = 'kPa'},
{id = 'nu', description = 'Poisson ratio', unit = ''},
{id = 'Coh', description = 'Cohesion', unit = 'kPa'},
{id = 'Phi', description = 'Angle of internal friction', unit = ''},
{id = 'Psi', description = 'Angle of dilation', unit = ''},
},
values = {
{E = 1e+07, nu = 0.24, Coh = 100, Phi = 25, Psi = 25},
}
}
Fractured Rock
The Fractured rock material considers the equivalent behavior of an intact rock and sets of discontinuities. This material requires the following properties:
Property | Description | Type | Def. Unit | required |
E | Elasticity modulus | Scalar | kPa | Yes |
nu | Poisson ratio | Scalar | – | Yes |
Knf | Normal elastic stiffness of fracture | Scalar /vector | kPa/m | Yes |
Ksf | shear elastic stiffness of fracture | Scalar /vector | kPa/m | Yes |
Sfr | Fracture spacing | Scalar /vector | m | Yes |
Dip | Angle of Dip | Scalar /vector | (*) | Yes |
Strike | Angle of Strike | Scalar /vector | (*) | Yes |
(*) The Dip and Strike angle must be defined in degree.
Example: An intact rock with two sets of fractures
PropertySet
{
id = 'MatProp',
typeName = 'GemaPropertySet',
description = 'Material properties',
properties = {
{id = 'E', description = 'Elasticity modulus', unit = 'kPa'},
{id = 'nu', description = 'Poisson ratio', unit = ''},
{id = 'Knf', description = 'Normal elastic stiffness of fracture', units = 'kPa/m', dim = '2'},
{id = 'Ksf', description = 'shear elastic stiffness of fracture', units = 'kPa/m', dim = '2'},
{id = 'Sfr', description = 'Fracture spacing', units = 'm', dim = '2'},
{id = 'Dip', description = 'Angle of Dip', units = '', dim = '2'},
{id = 'Strike', description = 'Angle of Strike', units = '', dim = '2'},
},
values = {
{E = 66.0e+06, nu = 0.25, Knf = {13.9e+06, 27.0e+06 }, Ksf = {6.95e+06, 13.0e+06}, Sfr = {0.1, 0.25}, Dip = {30, 20}, Strike = {0, 90}},
}
}
Isotropic Damage Model
See isotropicDamage
Solidifying Kelvin Chain
The Solidifying Kelvin Chain material considers the Solidication Theory proposed by Bazant applied in Kelvin chains to represent the basic creep of concrete.
This material requires the following properties:
Property | Description | Type | Def. Unit | Required |
E0 | Elastic modulus of outer spring | Scalar | kPa | Yes |
nu | Poisson`s ratio | Scalar | – | Yes |
Ei | Elastic moduli of Kelvin chain | Scalar /vector | kPa | Yes |
tau | Retardation times of Kelvin chain | Scalar /vector | day | Yes |
alpha (*) | Aging alpha factor | Scalar | – | Yes |
(*) If alpha is declared equal to zero, the material will not have aging.
Example: Solidifying Kelvin chain with three elements.
-- Number of Kelvin elements
local kelDim = 3
PropertySet
{
id = 'MatProp',
typeName = 'GemaPropertySet',
description = 'Material properties',
properties = {
{id = 'E0', description = 'Elastic modulus of outer spring', unit = 'kPa' },
{id = 'nu', description = 'Poisson ratio', unit = '' },
{id = 'Ei', description = 'Elastic modulus of kelvin chain', dim = kelDim, unit = 'MPa' },
{id = 'tau', description = 'Retardation times of kelvin chain', dim = kelDim, unit = 'day' },
{id = 'alpha', description = 'Aging alpha factor', unit = '' },
{id = 'materialM', description = 'Mechanical material type', constMap = constants.MechanicalFemPhysics.materialModels},
},
values = {
{E0 = 43.2e+06, nu = 0.2, Ei = {76.9e+06, 225.5e+06, 65.2e+06}, tau = {1, 10, 100}, alpha = 0.76, materialM = 'solidifyingKelvinChain'},
}
}
See more about Solidifying Kelvin chain.
Returns to Mechanical continuum material.
GeMA project main page